Non-invasive classification of macrophage polarisation by 2P-FLIM and machine learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.7554/elife.77373
In this study, we utilise fluorescence lifetime imaging of NAD(P)H-based cellular autofluorescence as a non-invasive modality to classify two contrasting states of human macrophages by proxy of their governing metabolic state. Macrophages derived from human blood-circulating monocytes were polarised using established protocols and metabolically challenged using small molecules to validate their responding metabolic actions in extracellular acidification and oxygen consumption. Large field-of-view images of individual polarised macrophages were obtained using fluorescence lifetime imaging microscopy (FLIM). These were challenged in real time with small-molecule perturbations of metabolism during imaging. We uncovered FLIM parameters that are pronounced under the action of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), which strongly stratifies the phenotype of polarised human macrophages; however, this performance is impacted by donor variability when analysing the data at a single-cell level. The stratification and parameters emanating from a full field-of-view and single-cell FLIM approach serve as the basis for machine learning models. Applying a random forests model, we identify three strongly governing FLIM parameters, achieving an area under the receiver operating characteristics curve (ROC-AUC) value of 0.944 and out-of-bag (OBB) error rate of 16.67% when classifying human macrophages in a full field-of-view image. To conclude, 2P-FLIM with the integration of machine learning models is showed to be a powerful technique for analysis of both human macrophage metabolism and polarisation at full FoV and single-cell level.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.7554/elife.77373
- OA Status
- gold
- Cited By
- 32
- References
- 63
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4306648660
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4306648660Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7554/elife.77373Digital Object Identifier
- Title
-
Non-invasive classification of macrophage polarisation by 2P-FLIM and machine learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-26Full publication date if available
- Authors
-
Nuno Neto, Sinead A O’Rourke, Mimi Zhang, Hannah K. Fitzgerald, Aisling Dunne, Michael G. MonaghanList of authors in order
- Landing page
-
https://doi.org/10.7554/elife.77373Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7554/elife.77373Direct OA link when available
- Concepts
-
Fluorescence-lifetime imaging microscopy, Autofluorescence, Biological system, Computer science, Artificial intelligence, Fluorescence, Cell, Biophysics, Chemistry, Physics, Nuclear magnetic resonance, Biology, Biochemistry, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
32Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 14, 2024: 4, 2023: 14Per-year citation counts (last 5 years)
- References (count)
-
63Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4306648660 |
|---|---|
| doi | https://doi.org/10.7554/elife.77373 |
| ids.doi | https://doi.org/10.7554/elife.77373 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36254592 |
| ids.openalex | https://openalex.org/W4306648660 |
| fwci | 3.77898835 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D002259 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000069550 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Machine Learning |
| mesh[3].qualifier_ui | Q000378 |
| mesh[3].descriptor_ui | D008264 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | metabolism |
| mesh[3].descriptor_name | Macrophages |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D008856 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Microscopy, Fluorescence |
| mesh[5].qualifier_ui | Q000378 |
| mesh[5].descriptor_ui | D009243 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | metabolism |
| mesh[5].descriptor_name | NAD |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D002259 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000069550 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Machine Learning |
| mesh[9].qualifier_ui | Q000378 |
| mesh[9].descriptor_ui | D008264 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | metabolism |
| mesh[9].descriptor_name | Macrophages |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D008856 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Microscopy, Fluorescence |
| mesh[11].qualifier_ui | Q000378 |
| mesh[11].descriptor_ui | D009243 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | metabolism |
| mesh[11].descriptor_name | NAD |
| type | article |
| title | Non-invasive classification of macrophage polarisation by 2P-FLIM and machine learning |
| awards[0].id | https://openalex.org/G2036982594 |
| awards[0].funder_id | https://openalex.org/F4320320847 |
| awards[0].display_name | |
| awards[0].funder_award_id | 13/RC/2073_P2 |
| awards[0].funder_display_name | Science Foundation Ireland |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11313 |
| topics[0].field.id | https://openalex.org/fields/24 |
| topics[0].field.display_name | Immunology and Microbiology |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2403 |
| topics[0].subfield.display_name | Immunology |
| topics[0].display_name | Immune cells in cancer |
| topics[1].id | https://openalex.org/T10540 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Advanced Fluorescence Microscopy Techniques |
| topics[2].id | https://openalex.org/T10977 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Optical Imaging and Spectroscopy Techniques |
| funders[0].id | https://openalex.org/F4320320847 |
| funders[0].ror | https://ror.org/0271asj38 |
| funders[0].display_name | Science Foundation Ireland |
| is_xpac | False |
| apc_list.value | 3000 |
| apc_list.currency | USD |
| apc_list.value_usd | 2500 |
| apc_paid.value | 3000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2500 |
| concepts[0].id | https://openalex.org/C57477423 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7165522575378418 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1434196 |
| concepts[0].display_name | Fluorescence-lifetime imaging microscopy |
| concepts[1].id | https://openalex.org/C179687394 |
| concepts[1].level | 3 |
| concepts[1].score | 0.4799059331417084 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4826281 |
| concepts[1].display_name | Autofluorescence |
| concepts[2].id | https://openalex.org/C186060115 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4645635187625885 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[2].display_name | Biological system |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4575776755809784 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44635000824928284 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C91881484 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42378100752830505 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q191807 |
| concepts[5].display_name | Fluorescence |
| concepts[6].id | https://openalex.org/C1491633281 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4109541177749634 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7868 |
| concepts[6].display_name | Cell |
| concepts[7].id | https://openalex.org/C12554922 |
| concepts[7].level | 1 |
| concepts[7].score | 0.40508052706718445 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7100 |
| concepts[7].display_name | Biophysics |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.38287824392318726 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.37200599908828735 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C46141821 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32153284549713135 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q209402 |
| concepts[10].display_name | Nuclear magnetic resonance |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2947981357574463 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2630922794342041 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C120665830 |
| concepts[13].level | 1 |
| concepts[13].score | 0.17269644141197205 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[13].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/fluorescence-lifetime-imaging-microscopy |
| keywords[0].score | 0.7165522575378418 |
| keywords[0].display_name | Fluorescence-lifetime imaging microscopy |
| keywords[1].id | https://openalex.org/keywords/autofluorescence |
| keywords[1].score | 0.4799059331417084 |
| keywords[1].display_name | Autofluorescence |
| keywords[2].id | https://openalex.org/keywords/biological-system |
| keywords[2].score | 0.4645635187625885 |
| keywords[2].display_name | Biological system |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4575776755809784 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.44635000824928284 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/fluorescence |
| keywords[5].score | 0.42378100752830505 |
| keywords[5].display_name | Fluorescence |
| keywords[6].id | https://openalex.org/keywords/cell |
| keywords[6].score | 0.4109541177749634 |
| keywords[6].display_name | Cell |
| keywords[7].id | https://openalex.org/keywords/biophysics |
| keywords[7].score | 0.40508052706718445 |
| keywords[7].display_name | Biophysics |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.38287824392318726 |
| keywords[8].display_name | Chemistry |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.37200599908828735 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/nuclear-magnetic-resonance |
| keywords[10].score | 0.32153284549713135 |
| keywords[10].display_name | Nuclear magnetic resonance |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.2947981357574463 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/biochemistry |
| keywords[12].score | 0.2630922794342041 |
| keywords[12].display_name | Biochemistry |
| keywords[13].id | https://openalex.org/keywords/optics |
| keywords[13].score | 0.17269644141197205 |
| keywords[13].display_name | Optics |
| language | en |
| locations[0].id | doi:10.7554/elife.77373 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S1336409049 |
| locations[0].source.issn | 2050-084X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2050-084X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | eLife |
| locations[0].source.host_organization | https://openalex.org/P4310311710 |
| locations[0].source.host_organization_name | eLife Sciences Publications Ltd |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311710 |
| locations[0].source.host_organization_lineage_names | eLife Sciences Publications Ltd |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | eLife |
| locations[0].landing_page_url | https://doi.org/10.7554/elife.77373 |
| locations[1].id | pmid:36254592 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | eLife |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36254592 |
| locations[2].id | pmh:oai:doaj.org/article:fa72c5e814184ffa983d2f215ae305c0 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | eLife, Vol 11 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/fa72c5e814184ffa983d2f215ae305c0 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9578711 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | eLife |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9578711 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5005733713 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5467-8720 |
| authorships[0].author.display_name | Nuno Neto |
| authorships[0].countries | IE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I205274468 |
| authorships[0].affiliations[0].raw_affiliation_string | Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I205274468 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin |
| authorships[0].institutions[0].id | https://openalex.org/I205274468 |
| authorships[0].institutions[0].ror | https://ror.org/02tyrky19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I205274468 |
| authorships[0].institutions[0].country_code | IE |
| authorships[0].institutions[0].display_name | Trinity College Dublin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nuno GB Neto |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin |
| authorships[1].author.id | https://openalex.org/A5065778349 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0415-9871 |
| authorships[1].author.display_name | Sinead A O’Rourke |
| authorships[1].countries | IE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205274468 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I205274468 |
| authorships[1].affiliations[1].raw_affiliation_string | Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I205274468 |
| authorships[1].affiliations[2].raw_affiliation_string | School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin |
| authorships[1].institutions[0].id | https://openalex.org/I205274468 |
| authorships[1].institutions[0].ror | https://ror.org/02tyrky19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205274468 |
| authorships[1].institutions[0].country_code | IE |
| authorships[1].institutions[0].display_name | Trinity College Dublin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sinead A O'Rourke |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin |
| authorships[2].author.id | https://openalex.org/A5027322470 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3807-297X |
| authorships[2].author.display_name | Mimi Zhang |
| authorships[2].countries | IE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205274468 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Statistics, Trinity College Dublin |
| authorships[2].institutions[0].id | https://openalex.org/I205274468 |
| authorships[2].institutions[0].ror | https://ror.org/02tyrky19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I205274468 |
| authorships[2].institutions[0].country_code | IE |
| authorships[2].institutions[0].display_name | Trinity College Dublin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mimi Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Statistics, Trinity College Dublin |
| authorships[3].author.id | https://openalex.org/A5051012352 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1806-9885 |
| authorships[3].author.display_name | Hannah K. Fitzgerald |
| authorships[3].countries | IE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I205274468 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin |
| authorships[3].institutions[0].id | https://openalex.org/I205274468 |
| authorships[3].institutions[0].ror | https://ror.org/02tyrky19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I205274468 |
| authorships[3].institutions[0].country_code | IE |
| authorships[3].institutions[0].display_name | Trinity College Dublin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hannah K Fitzgerald |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin |
| authorships[4].author.id | https://openalex.org/A5030082651 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2342-9518 |
| authorships[4].author.display_name | Aisling Dunne |
| authorships[4].countries | IE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I205274468 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I142762351, https://openalex.org/I205274468, https://openalex.org/I4210112033 |
| authorships[4].affiliations[1].raw_affiliation_string | Advanced Materials for BioEngineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland |
| authorships[4].institutions[0].id | https://openalex.org/I4210112033 |
| authorships[4].institutions[0].ror | https://ror.org/01c4rxk68 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I142762351, https://openalex.org/I188760350, https://openalex.org/I205274468, https://openalex.org/I230495080, https://openalex.org/I27577105, https://openalex.org/I4210112033, https://openalex.org/I42934936 |
| authorships[4].institutions[0].country_code | IE |
| authorships[4].institutions[0].display_name | Advanced Materials and BioEngineering Research |
| authorships[4].institutions[1].id | https://openalex.org/I142762351 |
| authorships[4].institutions[1].ror | https://ror.org/01hxy9878 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I142762351 |
| authorships[4].institutions[1].country_code | IE |
| authorships[4].institutions[1].display_name | Royal College of Surgeons in Ireland |
| authorships[4].institutions[2].id | https://openalex.org/I205274468 |
| authorships[4].institutions[2].ror | https://ror.org/02tyrky19 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I205274468 |
| authorships[4].institutions[2].country_code | IE |
| authorships[4].institutions[2].display_name | Trinity College Dublin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Aisling Dunne |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Advanced Materials for BioEngineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin |
| authorships[5].author.id | https://openalex.org/A5016008892 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5530-4998 |
| authorships[5].author.display_name | Michael G. Monaghan |
| authorships[5].countries | IE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I181231927 |
| authorships[5].affiliations[0].raw_affiliation_string | CURAM SFI Research Centre for Medical Devices, National University of Ireland |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I205274468 |
| authorships[5].affiliations[1].raw_affiliation_string | Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I142762351, https://openalex.org/I205274468, https://openalex.org/I4210112033 |
| authorships[5].affiliations[2].raw_affiliation_string | Advanced Materials for BioEngineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland |
| authorships[5].affiliations[3].institution_ids | https://openalex.org/I205274468 |
| authorships[5].affiliations[3].raw_affiliation_string | Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin |
| authorships[5].institutions[0].id | https://openalex.org/I4210112033 |
| authorships[5].institutions[0].ror | https://ror.org/01c4rxk68 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I142762351, https://openalex.org/I188760350, https://openalex.org/I205274468, https://openalex.org/I230495080, https://openalex.org/I27577105, https://openalex.org/I4210112033, https://openalex.org/I42934936 |
| authorships[5].institutions[0].country_code | IE |
| authorships[5].institutions[0].display_name | Advanced Materials and BioEngineering Research |
| authorships[5].institutions[1].id | https://openalex.org/I181231927 |
| authorships[5].institutions[1].ror | https://ror.org/00shsf120 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I181231927 |
| authorships[5].institutions[1].country_code | IE |
| authorships[5].institutions[1].display_name | National University of Ireland |
| authorships[5].institutions[2].id | https://openalex.org/I142762351 |
| authorships[5].institutions[2].ror | https://ror.org/01hxy9878 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I142762351 |
| authorships[5].institutions[2].country_code | IE |
| authorships[5].institutions[2].display_name | Royal College of Surgeons in Ireland |
| authorships[5].institutions[3].id | https://openalex.org/I205274468 |
| authorships[5].institutions[3].ror | https://ror.org/02tyrky19 |
| authorships[5].institutions[3].type | education |
| authorships[5].institutions[3].lineage | https://openalex.org/I205274468 |
| authorships[5].institutions[3].country_code | IE |
| authorships[5].institutions[3].display_name | Trinity College Dublin |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Michael G Monaghan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Advanced Materials for BioEngineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, CURAM SFI Research Centre for Medical Devices, National University of Ireland, Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7554/elife.77373 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Non-invasive classification of macrophage polarisation by 2P-FLIM and machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T11313 |
| primary_topic.field.id | https://openalex.org/fields/24 |
| primary_topic.field.display_name | Immunology and Microbiology |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2403 |
| primary_topic.subfield.display_name | Immunology |
| primary_topic.display_name | Immune cells in cancer |
| related_works | https://openalex.org/W943367353, https://openalex.org/W2078437878, https://openalex.org/W1966978880, https://openalex.org/W2037276225, https://openalex.org/W1833947617, https://openalex.org/W2009432835, https://openalex.org/W1672167011, https://openalex.org/W3140843298, https://openalex.org/W2145569564, https://openalex.org/W4301600299 |
| cited_by_count | 32 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 14 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 14 |
| locations_count | 4 |
| best_oa_location.id | doi:10.7554/elife.77373 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S1336409049 |
| best_oa_location.source.issn | 2050-084X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2050-084X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | eLife |
| best_oa_location.source.host_organization | https://openalex.org/P4310311710 |
| best_oa_location.source.host_organization_name | eLife Sciences Publications Ltd |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311710 |
| best_oa_location.source.host_organization_lineage_names | eLife Sciences Publications Ltd |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | eLife |
| best_oa_location.landing_page_url | https://doi.org/10.7554/elife.77373 |
| primary_location.id | doi:10.7554/elife.77373 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S1336409049 |
| primary_location.source.issn | 2050-084X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2050-084X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | eLife |
| primary_location.source.host_organization | https://openalex.org/P4310311710 |
| primary_location.source.host_organization_name | eLife Sciences Publications Ltd |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311710 |
| primary_location.source.host_organization_lineage_names | eLife Sciences Publications Ltd |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | eLife |
| primary_location.landing_page_url | https://doi.org/10.7554/elife.77373 |
| publication_date | 2022-09-26 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2066854915, https://openalex.org/W1135048249, https://openalex.org/W2337277441, https://openalex.org/W1019830208, https://openalex.org/W2533224590, https://openalex.org/W2119795324, https://openalex.org/W1993048177, https://openalex.org/W2414054851, https://openalex.org/W2911964244, https://openalex.org/W3112662112, https://openalex.org/W3014143827, https://openalex.org/W4200412374, https://openalex.org/W3095997914, https://openalex.org/W2038689279, https://openalex.org/W3021656578, https://openalex.org/W2081659051, https://openalex.org/W2124696711, https://openalex.org/W2025568741, https://openalex.org/W2527800795, https://openalex.org/W2111920179, https://openalex.org/W2032663391, https://openalex.org/W1993511165, https://openalex.org/W3016192703, https://openalex.org/W2985866648, https://openalex.org/W1980276147, https://openalex.org/W2001717792, https://openalex.org/W2038781914, https://openalex.org/W2582686270, https://openalex.org/W1923917571, https://openalex.org/W2020744745, https://openalex.org/W2889326414, https://openalex.org/W1994174603, https://openalex.org/W2811106513, https://openalex.org/W2054472394, https://openalex.org/W2159560463, https://openalex.org/W4240217831, https://openalex.org/W2997102524, https://openalex.org/W2468925656, https://openalex.org/W3130586185, https://openalex.org/W2796005422, https://openalex.org/W3184156723, https://openalex.org/W2889971728, https://openalex.org/W2770943031, https://openalex.org/W2890600951, https://openalex.org/W3021413923, https://openalex.org/W2015072959, https://openalex.org/W2129827453, https://openalex.org/W2052607700, https://openalex.org/W2587153306, https://openalex.org/W2770893462, https://openalex.org/W2150577353, https://openalex.org/W2188356399, https://openalex.org/W2604693432, https://openalex.org/W2109012433, https://openalex.org/W2034489756, https://openalex.org/W2955084980, https://openalex.org/W1484356492, https://openalex.org/W2065879261, https://openalex.org/W2121388227, https://openalex.org/W3045474441, https://openalex.org/W2106774411, https://openalex.org/W2792935190, https://openalex.org/W2540093921 |
| referenced_works_count | 63 |
| abstract_inverted_index.a | 13, 124, 133, 149, 185, 203 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 189 |
| abstract_inverted_index.We | 88 |
| abstract_inverted_index.an | 161 |
| abstract_inverted_index.as | 12, 141 |
| abstract_inverted_index.at | 123, 215 |
| abstract_inverted_index.be | 202 |
| abstract_inverted_index.by | 24, 116 |
| abstract_inverted_index.in | 54, 78, 184 |
| abstract_inverted_index.is | 114, 199 |
| abstract_inverted_index.of | 8, 21, 26, 63, 84, 98, 107, 171, 178, 195, 208 |
| abstract_inverted_index.to | 16, 48, 201 |
| abstract_inverted_index.we | 3, 153 |
| abstract_inverted_index.FoV | 217 |
| abstract_inverted_index.The | 127 |
| abstract_inverted_index.and | 42, 57, 129, 136, 173, 213, 218 |
| abstract_inverted_index.are | 93 |
| abstract_inverted_index.for | 144, 206 |
| abstract_inverted_index.the | 96, 105, 121, 142, 164, 193 |
| abstract_inverted_index.two | 18 |
| abstract_inverted_index.FLIM | 90, 138, 158 |
| abstract_inverted_index.area | 162 |
| abstract_inverted_index.both | 209 |
| abstract_inverted_index.data | 122 |
| abstract_inverted_index.from | 33, 132 |
| abstract_inverted_index.full | 134, 186, 216 |
| abstract_inverted_index.rate | 177 |
| abstract_inverted_index.real | 79 |
| abstract_inverted_index.that | 92 |
| abstract_inverted_index.this | 1, 112 |
| abstract_inverted_index.time | 80 |
| abstract_inverted_index.were | 37, 67, 76 |
| abstract_inverted_index.when | 119, 180 |
| abstract_inverted_index.with | 81, 192 |
| abstract_inverted_index.(OBB) | 175 |
| abstract_inverted_index.0.944 | 172 |
| abstract_inverted_index.Large | 60 |
| abstract_inverted_index.These | 75 |
| abstract_inverted_index.basis | 143 |
| abstract_inverted_index.curve | 168 |
| abstract_inverted_index.donor | 117 |
| abstract_inverted_index.error | 176 |
| abstract_inverted_index.human | 22, 34, 109, 182, 210 |
| abstract_inverted_index.proxy | 25 |
| abstract_inverted_index.serve | 140 |
| abstract_inverted_index.small | 46 |
| abstract_inverted_index.their | 27, 50 |
| abstract_inverted_index.three | 155 |
| abstract_inverted_index.under | 95, 163 |
| abstract_inverted_index.using | 39, 45, 69 |
| abstract_inverted_index.value | 170 |
| abstract_inverted_index.which | 102 |
| abstract_inverted_index.16.67% | 179 |
| abstract_inverted_index.action | 97 |
| abstract_inverted_index.during | 86 |
| abstract_inverted_index.image. | 188 |
| abstract_inverted_index.images | 62 |
| abstract_inverted_index.level. | 126, 220 |
| abstract_inverted_index.model, | 152 |
| abstract_inverted_index.models | 198 |
| abstract_inverted_index.oxygen | 58 |
| abstract_inverted_index.random | 150 |
| abstract_inverted_index.showed | 200 |
| abstract_inverted_index.state. | 30 |
| abstract_inverted_index.states | 20 |
| abstract_inverted_index.study, | 2 |
| abstract_inverted_index.(FCCP), | 101 |
| abstract_inverted_index.(FLIM). | 74 |
| abstract_inverted_index.2P-FLIM | 191 |
| abstract_inverted_index.actions | 53 |
| abstract_inverted_index.derived | 32 |
| abstract_inverted_index.forests | 151 |
| abstract_inverted_index.imaging | 7, 72 |
| abstract_inverted_index.machine | 145, 196 |
| abstract_inverted_index.models. | 147 |
| abstract_inverted_index.utilise | 4 |
| abstract_inverted_index.Applying | 148 |
| abstract_inverted_index.analysis | 207 |
| abstract_inverted_index.approach | 139 |
| abstract_inverted_index.carbonyl | 99 |
| abstract_inverted_index.cellular | 10 |
| abstract_inverted_index.classify | 17 |
| abstract_inverted_index.however, | 111 |
| abstract_inverted_index.identify | 154 |
| abstract_inverted_index.imaging. | 87 |
| abstract_inverted_index.impacted | 115 |
| abstract_inverted_index.learning | 146, 197 |
| abstract_inverted_index.lifetime | 6, 71 |
| abstract_inverted_index.modality | 15 |
| abstract_inverted_index.obtained | 68 |
| abstract_inverted_index.powerful | 204 |
| abstract_inverted_index.receiver | 165 |
| abstract_inverted_index.strongly | 103, 156 |
| abstract_inverted_index.validate | 49 |
| abstract_inverted_index.(ROC-AUC) | 169 |
| abstract_inverted_index.achieving | 160 |
| abstract_inverted_index.analysing | 120 |
| abstract_inverted_index.conclude, | 190 |
| abstract_inverted_index.emanating | 131 |
| abstract_inverted_index.governing | 28, 157 |
| abstract_inverted_index.metabolic | 29, 52 |
| abstract_inverted_index.molecules | 47 |
| abstract_inverted_index.monocytes | 36 |
| abstract_inverted_index.operating | 166 |
| abstract_inverted_index.phenotype | 106 |
| abstract_inverted_index.polarised | 38, 65, 108 |
| abstract_inverted_index.protocols | 41 |
| abstract_inverted_index.technique | 205 |
| abstract_inverted_index.uncovered | 89 |
| abstract_inverted_index.challenged | 44, 77 |
| abstract_inverted_index.individual | 64 |
| abstract_inverted_index.macrophage | 211 |
| abstract_inverted_index.metabolism | 85, 212 |
| abstract_inverted_index.microscopy | 73 |
| abstract_inverted_index.out-of-bag | 174 |
| abstract_inverted_index.parameters | 91, 130 |
| abstract_inverted_index.pronounced | 94 |
| abstract_inverted_index.responding | 51 |
| abstract_inverted_index.stratifies | 104 |
| abstract_inverted_index.Macrophages | 31 |
| abstract_inverted_index.classifying | 181 |
| abstract_inverted_index.contrasting | 19 |
| abstract_inverted_index.established | 40 |
| abstract_inverted_index.integration | 194 |
| abstract_inverted_index.macrophages | 23, 66, 183 |
| abstract_inverted_index.parameters, | 159 |
| abstract_inverted_index.performance | 113 |
| abstract_inverted_index.single-cell | 125, 137, 219 |
| abstract_inverted_index.variability | 118 |
| abstract_inverted_index.consumption. | 59 |
| abstract_inverted_index.fluorescence | 5, 70 |
| abstract_inverted_index.macrophages; | 110 |
| abstract_inverted_index.non-invasive | 14 |
| abstract_inverted_index.polarisation | 214 |
| abstract_inverted_index.NAD(P)H-based | 9 |
| abstract_inverted_index.acidification | 56 |
| abstract_inverted_index.extracellular | 55 |
| abstract_inverted_index.field-of-view | 61, 135, 187 |
| abstract_inverted_index.metabolically | 43 |
| abstract_inverted_index.perturbations | 83 |
| abstract_inverted_index.small-molecule | 82 |
| abstract_inverted_index.stratification | 128 |
| abstract_inverted_index.characteristics | 167 |
| abstract_inverted_index.autofluorescence | 11 |
| abstract_inverted_index.blood-circulating | 35 |
| abstract_inverted_index.cyanide-p-trifluoromethoxyphenylhydrazone | 100 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.92174935 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |