Non-Parametric Mixture Modelling and its Application to Disease Progression Modelling Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1101/297978
Dementia is characterised by its progressive degeneration of cognitive abilities. In research cohorts, detailed neuropsychological test batteries are often administered to better understand how cognition changes over time. Understanding cognitive changes in dementia is of great importance, particularly in determining how structural changes in the brain may affect cognition and in facilitating earlier detection of symptomatic changes. Disease progression models are often applied to these data to understand how a disease changes over time from cross-sectional data or to disease trajectories from large numbers of individuals. Previous disease progression models used to build longitudinal models from cross-sectional data have focused on brain imaging data; however, these models are not directly applicable to cognitive data. Here we use the novel, non-parametric, Kernel Density Estimation Mixture Modelling (KDEMM) approach and demonstrate accurate modelling of the progression of cognitive test data. We found that using KDEMM resulted in more accurate models of disease progression in simulated data compared to Gaussian Mixture Models (GMMs) for the majority of parameters used to simulate the data. When comparing KDEMM and GMM to cognitive data collected in different Alzheimers Disease subtypes, we found the KDEMM resulted in a model much more in line with clinical phenotype. We anticipate that the KDEMM will be used to integrate cognitive test data, and other non-normally distributed datasets into complex disease progression models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/297978
- https://www.biorxiv.org/content/biorxiv/early/2018/04/10/297978.full.pdf
- OA Status
- green
- Cited By
- 2
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2796586717
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2796586717Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/297978Digital Object Identifier
- Title
-
Non-Parametric Mixture Modelling and its Application to Disease Progression ModellingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-04-10Full publication date if available
- Authors
-
Nicholas C. Firth, Neil P. Oxtoby, Silvia Primativo, Emilie Brotherhood, Alexandra L. Young, Keir Yong, Sebastian J. Crutch, Daniel C. AlexanderList of authors in order
- Landing page
-
https://doi.org/10.1101/297978Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2018/04/10/297978.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2018/04/10/297978.full.pdfDirect OA link when available
- Concepts
-
Cognition, Mixture model, Neuropsychology, Dementia, Disease, Parametric statistics, Computer science, Cognitive decline, Psychology, Cognitive psychology, Machine learning, Artificial intelligence, Medicine, Statistics, Neuroscience, Pathology, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 1, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2796586717 |
|---|---|
| doi | https://doi.org/10.1101/297978 |
| ids.doi | https://doi.org/10.1101/297978 |
| ids.mag | 2796586717 |
| ids.openalex | https://openalex.org/W2796586717 |
| fwci | 0.39712492 |
| type | preprint |
| title | Non-Parametric Mixture Modelling and its Application to Disease Progression Modelling |
| awards[0].id | https://openalex.org/G344318989 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/M006093/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[1].id | https://openalex.org/G4842494824 |
| awards[1].funder_id | https://openalex.org/F4320334630 |
| awards[1].display_name | |
| awards[1].funder_award_id | ES/L001810/1 |
| awards[1].funder_display_name | Economic and Social Research Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Methods and Mixture Models |
| topics[1].id | https://openalex.org/T10009 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9764000177383423 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2738 |
| topics[1].subfield.display_name | Psychiatry and Mental health |
| topics[1].display_name | Dementia and Cognitive Impairment Research |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9628000259399414 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| funders[1].id | https://openalex.org/F4320334630 |
| funders[1].ror | https://ror.org/03n0ht308 |
| funders[1].display_name | Economic and Social Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C169900460 |
| concepts[0].level | 2 |
| concepts[0].score | 0.673900842666626 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[0].display_name | Cognition |
| concepts[1].id | https://openalex.org/C61224824 |
| concepts[1].level | 2 |
| concepts[1].score | 0.617878794670105 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2260434 |
| concepts[1].display_name | Mixture model |
| concepts[2].id | https://openalex.org/C14216870 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5725232362747192 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3872 |
| concepts[2].display_name | Neuropsychology |
| concepts[3].id | https://openalex.org/C2779483572 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5358214378356934 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q83030 |
| concepts[3].display_name | Dementia |
| concepts[4].id | https://openalex.org/C2779134260 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5330953001976013 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[4].display_name | Disease |
| concepts[5].id | https://openalex.org/C117251300 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47932159900665283 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[5].display_name | Parametric statistics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4774361550807953 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C2984863031 |
| concepts[7].level | 4 |
| concepts[7].score | 0.4166909456253052 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q83030 |
| concepts[7].display_name | Cognitive decline |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4017677903175354 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C180747234 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3980540633201599 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[9].display_name | Cognitive psychology |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.38252341747283936 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35414618253707886 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.24774152040481567 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20987802743911743 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C169760540 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1613328754901886 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[14].display_name | Neuroscience |
| concepts[15].id | https://openalex.org/C142724271 |
| concepts[15].level | 1 |
| concepts[15].score | 0.12046772241592407 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[15].display_name | Pathology |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.11615392565727234 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/cognition |
| keywords[0].score | 0.673900842666626 |
| keywords[0].display_name | Cognition |
| keywords[1].id | https://openalex.org/keywords/mixture-model |
| keywords[1].score | 0.617878794670105 |
| keywords[1].display_name | Mixture model |
| keywords[2].id | https://openalex.org/keywords/neuropsychology |
| keywords[2].score | 0.5725232362747192 |
| keywords[2].display_name | Neuropsychology |
| keywords[3].id | https://openalex.org/keywords/dementia |
| keywords[3].score | 0.5358214378356934 |
| keywords[3].display_name | Dementia |
| keywords[4].id | https://openalex.org/keywords/disease |
| keywords[4].score | 0.5330953001976013 |
| keywords[4].display_name | Disease |
| keywords[5].id | https://openalex.org/keywords/parametric-statistics |
| keywords[5].score | 0.47932159900665283 |
| keywords[5].display_name | Parametric statistics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4774361550807953 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/cognitive-decline |
| keywords[7].score | 0.4166909456253052 |
| keywords[7].display_name | Cognitive decline |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.4017677903175354 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[9].score | 0.3980540633201599 |
| keywords[9].display_name | Cognitive psychology |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.38252341747283936 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.35414618253707886 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.24774152040481567 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.20987802743911743 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/neuroscience |
| keywords[14].score | 0.1613328754901886 |
| keywords[14].display_name | Neuroscience |
| keywords[15].id | https://openalex.org/keywords/pathology |
| keywords[15].score | 0.12046772241592407 |
| keywords[15].display_name | Pathology |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.11615392565727234 |
| keywords[16].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1101/297978 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2018/04/10/297978.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/297978 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5062890799 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5391-3143 |
| authorships[0].author.display_name | Nicholas C. Firth |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210126463, https://openalex.org/I45129253 |
| authorships[0].affiliations[0].raw_affiliation_string | Dementia Research Centre, University College London, UCL |
| authorships[0].affiliations[1].raw_affiliation_string | Centre for Medical Image Computing, Department of Computer Science, UCL |
| authorships[0].institutions[0].id | https://openalex.org/I4210126463 |
| authorships[0].institutions[0].ror | https://ror.org/02wedp412 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210126463 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | UK Dementia Research Institute |
| authorships[0].institutions[1].id | https://openalex.org/I45129253 |
| authorships[0].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | University College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nicholas C. Firth |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Centre for Medical Image Computing, Department of Computer Science, UCL, Dementia Research Centre, University College London, UCL |
| authorships[1].author.id | https://openalex.org/A5075265609 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0203-3909 |
| authorships[1].author.display_name | Neil P. Oxtoby |
| authorships[1].affiliations[0].raw_affiliation_string | Centre for Medical Image Computing, Department of Computer Science, UCL |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Neil P. Oxtoby |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centre for Medical Image Computing, Department of Computer Science, UCL |
| authorships[2].author.id | https://openalex.org/A5008314684 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9632-850X |
| authorships[2].author.display_name | Silvia Primativo |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I128649747 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Human Science, LUMSA University, Rome, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I128649747 |
| authorships[2].institutions[0].ror | https://ror.org/02d8v0v24 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I128649747 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | Libera Università Maria SS. Assunta |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Silvia Primativo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Human Science, LUMSA University, Rome, Italy |
| authorships[3].author.id | https://openalex.org/A5062482628 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6244-7735 |
| authorships[3].author.display_name | Emilie Brotherhood |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210126463, https://openalex.org/I45129253 |
| authorships[3].affiliations[0].raw_affiliation_string | Dementia Research Centre, University College London, UCL |
| authorships[3].institutions[0].id | https://openalex.org/I4210126463 |
| authorships[3].institutions[0].ror | https://ror.org/02wedp412 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210126463 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | UK Dementia Research Institute |
| authorships[3].institutions[1].id | https://openalex.org/I45129253 |
| authorships[3].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[3].institutions[1].country_code | GB |
| authorships[3].institutions[1].display_name | University College London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Emilie Brotherhood |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dementia Research Centre, University College London, UCL |
| authorships[4].author.id | https://openalex.org/A5028056283 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7772-781X |
| authorships[4].author.display_name | Alexandra L. Young |
| authorships[4].affiliations[0].raw_affiliation_string | Centre for Medical Image Computing, Department of Computer Science, UCL |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Alexandra L. Young |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Centre for Medical Image Computing, Department of Computer Science, UCL |
| authorships[5].author.id | https://openalex.org/A5015359108 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9708-3599 |
| authorships[5].author.display_name | Keir Yong |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210126463, https://openalex.org/I45129253 |
| authorships[5].affiliations[0].raw_affiliation_string | Dementia Research Centre, University College London, UCL |
| authorships[5].institutions[0].id | https://openalex.org/I4210126463 |
| authorships[5].institutions[0].ror | https://ror.org/02wedp412 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210126463 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | UK Dementia Research Institute |
| authorships[5].institutions[1].id | https://openalex.org/I45129253 |
| authorships[5].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[5].institutions[1].country_code | GB |
| authorships[5].institutions[1].display_name | University College London |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Keir X.X. Yong |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Dementia Research Centre, University College London, UCL |
| authorships[6].author.id | https://openalex.org/A5037524623 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4160-0139 |
| authorships[6].author.display_name | Sebastian J. Crutch |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210126463, https://openalex.org/I45129253 |
| authorships[6].affiliations[0].raw_affiliation_string | Dementia Research Centre, University College London, UCL |
| authorships[6].institutions[0].id | https://openalex.org/I4210126463 |
| authorships[6].institutions[0].ror | https://ror.org/02wedp412 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210126463 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | UK Dementia Research Institute |
| authorships[6].institutions[1].id | https://openalex.org/I45129253 |
| authorships[6].institutions[1].ror | https://ror.org/02jx3x895 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[6].institutions[1].country_code | GB |
| authorships[6].institutions[1].display_name | University College London |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sebastian J. Crutch |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Dementia Research Centre, University College London, UCL |
| authorships[7].author.id | https://openalex.org/A5033449704 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2439-350X |
| authorships[7].author.display_name | Daniel C. Alexander |
| authorships[7].countries | SG |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[7].affiliations[0].raw_affiliation_string | Clinical Imaging Research Centre, National University of Singapore, Singapore |
| authorships[7].affiliations[1].raw_affiliation_string | Centre for Medical Image Computing, Department of Computer Science, UCL |
| authorships[7].institutions[0].id | https://openalex.org/I165932596 |
| authorships[7].institutions[0].ror | https://ror.org/01tgyzw49 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I165932596 |
| authorships[7].institutions[0].country_code | SG |
| authorships[7].institutions[0].display_name | National University of Singapore |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Daniel C. Alexander |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Centre for Medical Image Computing, Department of Computer Science, UCL, Clinical Imaging Research Centre, National University of Singapore, Singapore |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2018/04/10/297978.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Non-Parametric Mixture Modelling and its Application to Disease Progression Modelling |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Methods and Mixture Models |
| related_works | https://openalex.org/W2409059799, https://openalex.org/W1972242255, https://openalex.org/W2966412519, https://openalex.org/W2890927416, https://openalex.org/W1993101344, https://openalex.org/W2775021631, https://openalex.org/W2028416698, https://openalex.org/W2128765271, https://openalex.org/W1481122508, https://openalex.org/W2208745537 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2018 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/297978 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2018/04/10/297978.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/297978 |
| primary_location.id | doi:10.1101/297978 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2018/04/10/297978.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/297978 |
| publication_date | 2018-04-10 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2052978590, https://openalex.org/W2341719493, https://openalex.org/W2261904358, https://openalex.org/W2592378632, https://openalex.org/W2110759468, https://openalex.org/W2106931873, https://openalex.org/W2157110881, https://openalex.org/W2309442902, https://openalex.org/W1597363372, https://openalex.org/W1968698114, https://openalex.org/W2064772069, https://openalex.org/W2167840686, https://openalex.org/W6773842061, https://openalex.org/W2055457387, https://openalex.org/W1992252533, https://openalex.org/W6929619787, https://openalex.org/W2530915672, https://openalex.org/W2006370463, https://openalex.org/W2767333668, https://openalex.org/W2743629169, https://openalex.org/W2101234009, https://openalex.org/W2607629364, https://openalex.org/W1982366717, https://openalex.org/W2759588044, https://openalex.org/W2610402968, https://openalex.org/W2078718001, https://openalex.org/W2593011127, https://openalex.org/W2105010736, https://openalex.org/W2136195493, https://openalex.org/W2782660935, https://openalex.org/W2950111679, https://openalex.org/W2795370771, https://openalex.org/W1994514180, https://openalex.org/W1978763244, https://openalex.org/W2134711807 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 70, 191 |
| abstract_inverted_index.In | 11 |
| abstract_inverted_index.We | 139, 200 |
| abstract_inverted_index.be | 206 |
| abstract_inverted_index.by | 4 |
| abstract_inverted_index.in | 32, 39, 44, 51, 145, 152, 180, 190, 195 |
| abstract_inverted_index.is | 2, 34 |
| abstract_inverted_index.of | 8, 35, 55, 85, 132, 135, 149, 164 |
| abstract_inverted_index.on | 101 |
| abstract_inverted_index.or | 78 |
| abstract_inverted_index.to | 21, 64, 67, 79, 92, 112, 156, 167, 176, 208 |
| abstract_inverted_index.we | 116, 185 |
| abstract_inverted_index.GMM | 175 |
| abstract_inverted_index.and | 50, 128, 174, 213 |
| abstract_inverted_index.are | 18, 61, 108 |
| abstract_inverted_index.for | 161 |
| abstract_inverted_index.how | 24, 41, 69 |
| abstract_inverted_index.its | 5 |
| abstract_inverted_index.may | 47 |
| abstract_inverted_index.not | 109 |
| abstract_inverted_index.the | 45, 118, 133, 162, 169, 187, 203 |
| abstract_inverted_index.use | 117 |
| abstract_inverted_index.Here | 115 |
| abstract_inverted_index.When | 171 |
| abstract_inverted_index.data | 66, 77, 98, 154, 178 |
| abstract_inverted_index.from | 75, 82, 96 |
| abstract_inverted_index.have | 99 |
| abstract_inverted_index.into | 218 |
| abstract_inverted_index.line | 196 |
| abstract_inverted_index.more | 146, 194 |
| abstract_inverted_index.much | 193 |
| abstract_inverted_index.over | 27, 73 |
| abstract_inverted_index.test | 16, 137, 211 |
| abstract_inverted_index.that | 141, 202 |
| abstract_inverted_index.time | 74 |
| abstract_inverted_index.used | 91, 166, 207 |
| abstract_inverted_index.will | 205 |
| abstract_inverted_index.with | 197 |
| abstract_inverted_index.KDEMM | 143, 173, 188, 204 |
| abstract_inverted_index.brain | 46, 102 |
| abstract_inverted_index.build | 93 |
| abstract_inverted_index.data, | 212 |
| abstract_inverted_index.data. | 114, 138, 170 |
| abstract_inverted_index.data; | 104 |
| abstract_inverted_index.found | 140, 186 |
| abstract_inverted_index.great | 36 |
| abstract_inverted_index.large | 83 |
| abstract_inverted_index.model | 192 |
| abstract_inverted_index.often | 19, 62 |
| abstract_inverted_index.other | 214 |
| abstract_inverted_index.these | 65, 106 |
| abstract_inverted_index.time. | 28 |
| abstract_inverted_index.using | 142 |
| abstract_inverted_index.(GMMs) | 160 |
| abstract_inverted_index.Kernel | 121 |
| abstract_inverted_index.Models | 159 |
| abstract_inverted_index.affect | 48 |
| abstract_inverted_index.better | 22 |
| abstract_inverted_index.models | 60, 90, 95, 107, 148 |
| abstract_inverted_index.novel, | 119 |
| abstract_inverted_index.(KDEMM) | 126 |
| abstract_inverted_index.Density | 122 |
| abstract_inverted_index.Disease | 58, 183 |
| abstract_inverted_index.Mixture | 124, 158 |
| abstract_inverted_index.applied | 63 |
| abstract_inverted_index.changes | 26, 31, 43, 72 |
| abstract_inverted_index.complex | 219 |
| abstract_inverted_index.disease | 71, 80, 88, 150, 220 |
| abstract_inverted_index.earlier | 53 |
| abstract_inverted_index.focused | 100 |
| abstract_inverted_index.imaging | 103 |
| abstract_inverted_index.models. | 222 |
| abstract_inverted_index.numbers | 84 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Dementia | 1 |
| abstract_inverted_index.Gaussian | 157 |
| abstract_inverted_index.Previous | 87 |
| abstract_inverted_index.accurate | 130, 147 |
| abstract_inverted_index.approach | 127 |
| abstract_inverted_index.changes. | 57 |
| abstract_inverted_index.clinical | 198 |
| abstract_inverted_index.cohorts, | 13 |
| abstract_inverted_index.compared | 155 |
| abstract_inverted_index.datasets | 217 |
| abstract_inverted_index.dementia | 33 |
| abstract_inverted_index.detailed | 14 |
| abstract_inverted_index.directly | 110 |
| abstract_inverted_index.however, | 105 |
| abstract_inverted_index.majority | 163 |
| abstract_inverted_index.research | 12 |
| abstract_inverted_index.resulted | 144, 189 |
| abstract_inverted_index.simulate | 168 |
| abstract_inverted_index.Modelling | 125 |
| abstract_inverted_index.batteries | 17 |
| abstract_inverted_index.cognition | 25, 49 |
| abstract_inverted_index.cognitive | 9, 30, 113, 136, 177, 210 |
| abstract_inverted_index.collected | 179 |
| abstract_inverted_index.comparing | 172 |
| abstract_inverted_index.detection | 54 |
| abstract_inverted_index.different | 181 |
| abstract_inverted_index.integrate | 209 |
| abstract_inverted_index.modelling | 131 |
| abstract_inverted_index.simulated | 153 |
| abstract_inverted_index.subtypes, | 184 |
| abstract_inverted_index.Alzheimers | 182 |
| abstract_inverted_index.Estimation | 123 |
| abstract_inverted_index.abilities. | 10 |
| abstract_inverted_index.anticipate | 201 |
| abstract_inverted_index.applicable | 111 |
| abstract_inverted_index.parameters | 165 |
| abstract_inverted_index.phenotype. | 199 |
| abstract_inverted_index.structural | 42 |
| abstract_inverted_index.understand | 23, 68 |
| abstract_inverted_index.demonstrate | 129 |
| abstract_inverted_index.determining | 40 |
| abstract_inverted_index.distributed | 216 |
| abstract_inverted_index.importance, | 37 |
| abstract_inverted_index.progression | 59, 89, 134, 151, 221 |
| abstract_inverted_index.progressive | 6 |
| abstract_inverted_index.symptomatic | 56 |
| abstract_inverted_index.administered | 20 |
| abstract_inverted_index.degeneration | 7 |
| abstract_inverted_index.facilitating | 52 |
| abstract_inverted_index.individuals. | 86 |
| abstract_inverted_index.longitudinal | 94 |
| abstract_inverted_index.non-normally | 215 |
| abstract_inverted_index.particularly | 38 |
| abstract_inverted_index.trajectories | 81 |
| abstract_inverted_index.Understanding | 29 |
| abstract_inverted_index.characterised | 3 |
| abstract_inverted_index.cross-sectional | 76, 97 |
| abstract_inverted_index.non-parametric, | 120 |
| abstract_inverted_index.neuropsychological | 15 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.66524337 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |