Non-Wieferich primes in arithmetic progressions Article Swipe
Yong-Gao Chen
,
Yuchen Ding
·
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1090/proc/13201
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1090/proc/13201
Graves and Murty proved that for any integer $a\ge 2$ and any fixed integer $k\ge 2$, there are $\gg \log x/\log \log x$ primes $p\le x$ such that $a^{p-1}\not \equiv 1\pmod {p^2}$ and $p\equiv 1\pmod k$, under the assumption of the abc conjecture. In this paper, for any fixed $M$, the bound $\log x/\log \log x$ is improved to $(\log x/\log \log x) (\log \log \log x)^M$.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1090/proc/13201
- https://www.ams.org/proc/2017-145-05/S0002-9939-2017-13201-8/S0002-9939-2017-13201-8.pdf
- OA Status
- bronze
- Cited By
- 9
- References
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2329517519
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2329517519Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1090/proc/13201Digital Object Identifier
- Title
-
Non-Wieferich primes in arithmetic progressionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-03-24Full publication date if available
- Authors
-
Yong-Gao Chen, Yuchen DingList of authors in order
- Landing page
-
https://doi.org/10.1090/proc/13201Publisher landing page
- PDF URL
-
https://www.ams.org/proc/2017-145-05/S0002-9939-2017-13201-8/S0002-9939-2017-13201-8.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.ams.org/proc/2017-145-05/S0002-9939-2017-13201-8/S0002-9939-2017-13201-8.pdfDirect OA link when available
- Concepts
-
Integer (computer science), Log-log plot, Mathematics, Combinatorics, Conjecture, Binary logarithm, Arithmetic, Discrete mathematics, Computer science, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1, 2021: 2, 2020: 1, 2019: 2Per-year citation counts (last 5 years)
- References (count)
-
4Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2329517519 |
|---|---|
| doi | https://doi.org/10.1090/proc/13201 |
| ids.doi | https://doi.org/10.1090/proc/13201 |
| ids.mag | 2329517519 |
| ids.openalex | https://openalex.org/W2329517519 |
| fwci | 2.40941753 |
| type | article |
| title | Non-Wieferich primes in arithmetic progressions |
| awards[0].id | https://openalex.org/G1223334230 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 11371195 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 5 |
| biblio.volume | 145 |
| biblio.last_page | 1836 |
| biblio.first_page | 1833 |
| topics[0].id | https://openalex.org/T11166 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2602 |
| topics[0].subfield.display_name | Algebra and Number Theory |
| topics[0].display_name | Analytic Number Theory Research |
| topics[1].id | https://openalex.org/T12170 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2614 |
| topics[1].subfield.display_name | Theoretical Computer Science |
| topics[1].display_name | History and Theory of Mathematics |
| topics[2].id | https://openalex.org/T12504 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9911999702453613 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2608 |
| topics[2].subfield.display_name | Geometry and Topology |
| topics[2].display_name | Mathematics and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97137487 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7176786065101624 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q729138 |
| concepts[0].display_name | Integer (computer science) |
| concepts[1].id | https://openalex.org/C195292467 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6706069707870483 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2091879 |
| concepts[1].display_name | Log-log plot |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.656209409236908 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C114614502 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6163941025733948 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[3].display_name | Combinatorics |
| concepts[4].id | https://openalex.org/C2780990831 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6004517078399658 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q319141 |
| concepts[4].display_name | Conjecture |
| concepts[5].id | https://openalex.org/C63553672 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4850141704082489 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q581168 |
| concepts[5].display_name | Binary logarithm |
| concepts[6].id | https://openalex.org/C94375191 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4787989556789398 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[6].display_name | Arithmetic |
| concepts[7].id | https://openalex.org/C118615104 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3289014995098114 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[7].display_name | Discrete mathematics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.07451522350311279 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/integer |
| keywords[0].score | 0.7176786065101624 |
| keywords[0].display_name | Integer (computer science) |
| keywords[1].id | https://openalex.org/keywords/log-log-plot |
| keywords[1].score | 0.6706069707870483 |
| keywords[1].display_name | Log-log plot |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.656209409236908 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/combinatorics |
| keywords[3].score | 0.6163941025733948 |
| keywords[3].display_name | Combinatorics |
| keywords[4].id | https://openalex.org/keywords/conjecture |
| keywords[4].score | 0.6004517078399658 |
| keywords[4].display_name | Conjecture |
| keywords[5].id | https://openalex.org/keywords/binary-logarithm |
| keywords[5].score | 0.4850141704082489 |
| keywords[5].display_name | Binary logarithm |
| keywords[6].id | https://openalex.org/keywords/arithmetic |
| keywords[6].score | 0.4787989556789398 |
| keywords[6].display_name | Arithmetic |
| keywords[7].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[7].score | 0.3289014995098114 |
| keywords[7].display_name | Discrete mathematics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.07451522350311279 |
| keywords[8].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1090/proc/13201 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210226894 |
| locations[0].source.issn | 0002-9939, 1088-6826 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0002-9939 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the American Mathematical Society |
| locations[0].source.host_organization | https://openalex.org/P4310315719 |
| locations[0].source.host_organization_name | American Mathematical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315719 |
| locations[0].source.host_organization_lineage_names | American Mathematical Society |
| locations[0].license | |
| locations[0].pdf_url | https://www.ams.org/proc/2017-145-05/S0002-9939-2017-13201-8/S0002-9939-2017-13201-8.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the American Mathematical Society |
| locations[0].landing_page_url | https://doi.org/10.1090/proc/13201 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5071548410 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8775-431X |
| authorships[0].author.display_name | Yong-Gao Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I152031979 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Peopleâs Republic of China |
| authorships[0].institutions[0].id | https://openalex.org/I152031979 |
| authorships[0].institutions[0].ror | https://ror.org/036trcv74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I152031979 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yong-Gao Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Peopleâs Republic of China |
| authorships[1].author.id | https://openalex.org/A5065216100 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7016-309X |
| authorships[1].author.display_name | Yuchen Ding |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I152031979 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Peopleâs Repubilc of China |
| authorships[1].institutions[0].id | https://openalex.org/I152031979 |
| authorships[1].institutions[0].ror | https://ror.org/036trcv74 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I152031979 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing Normal University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yu Ding |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, Peopleâs Repubilc of China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ams.org/proc/2017-145-05/S0002-9939-2017-13201-8/S0002-9939-2017-13201-8.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Non-Wieferich primes in arithmetic progressions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11166 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2602 |
| primary_topic.subfield.display_name | Algebra and Number Theory |
| primary_topic.display_name | Analytic Number Theory Research |
| related_works | https://openalex.org/W2766104912, https://openalex.org/W4298198176, https://openalex.org/W4300694038, https://openalex.org/W2085096159, https://openalex.org/W1989316102, https://openalex.org/W2740334431, https://openalex.org/W4212808623, https://openalex.org/W3165388365, https://openalex.org/W4287177515, https://openalex.org/W2016924854 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2018 |
| counts_by_year[5].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1090/proc/13201 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210226894 |
| best_oa_location.source.issn | 0002-9939, 1088-6826 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0002-9939 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the American Mathematical Society |
| best_oa_location.source.host_organization | https://openalex.org/P4310315719 |
| best_oa_location.source.host_organization_name | American Mathematical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315719 |
| best_oa_location.source.host_organization_lineage_names | American Mathematical Society |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ams.org/proc/2017-145-05/S0002-9939-2017-13201-8/S0002-9939-2017-13201-8.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the American Mathematical Society |
| best_oa_location.landing_page_url | https://doi.org/10.1090/proc/13201 |
| primary_location.id | doi:10.1090/proc/13201 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210226894 |
| primary_location.source.issn | 0002-9939, 1088-6826 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0002-9939 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the American Mathematical Society |
| primary_location.source.host_organization | https://openalex.org/P4310315719 |
| primary_location.source.host_organization_name | American Mathematical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315719 |
| primary_location.source.host_organization_lineage_names | American Mathematical Society |
| primary_location.license | |
| primary_location.pdf_url | https://www.ams.org/proc/2017-145-05/S0002-9939-2017-13201-8/S0002-9939-2017-13201-8.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the American Mathematical Society |
| primary_location.landing_page_url | https://doi.org/10.1090/proc/13201 |
| publication_date | 2016-03-24 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W171453585, https://openalex.org/W3175367423, https://openalex.org/W1981048801, https://openalex.org/W2015320374 |
| referenced_works_count | 4 |
| abstract_inverted_index.2$ | 9 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.is | 56 |
| abstract_inverted_index.of | 39 |
| abstract_inverted_index.to | 58 |
| abstract_inverted_index.x$ | 22, 25, 55 |
| abstract_inverted_index.x) | 62 |
| abstract_inverted_index.2$, | 15 |
| abstract_inverted_index.abc | 41 |
| abstract_inverted_index.and | 1, 10, 32 |
| abstract_inverted_index.any | 6, 11, 47 |
| abstract_inverted_index.are | 17 |
| abstract_inverted_index.for | 5, 46 |
| abstract_inverted_index.k$, | 35 |
| abstract_inverted_index.the | 37, 40, 50 |
| abstract_inverted_index.$M$, | 49 |
| abstract_inverted_index.$\gg | 18 |
| abstract_inverted_index.\log | 19, 21, 54, 61, 64, 65 |
| abstract_inverted_index.such | 26 |
| abstract_inverted_index.that | 4, 27 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.$\log | 52 |
| abstract_inverted_index.$a\ge | 8 |
| abstract_inverted_index.$k\ge | 14 |
| abstract_inverted_index.$p\le | 24 |
| abstract_inverted_index.(\log | 63 |
| abstract_inverted_index.Murty | 2 |
| abstract_inverted_index.bound | 51 |
| abstract_inverted_index.fixed | 12, 48 |
| abstract_inverted_index.there | 16 |
| abstract_inverted_index.under | 36 |
| abstract_inverted_index.$(\log | 59 |
| abstract_inverted_index.1\pmod | 30, 34 |
| abstract_inverted_index.Graves | 0 |
| abstract_inverted_index.\equiv | 29 |
| abstract_inverted_index.paper, | 45 |
| abstract_inverted_index.primes | 23 |
| abstract_inverted_index.proved | 3 |
| abstract_inverted_index.x)^M$. | 66 |
| abstract_inverted_index.x/\log | 20, 53, 60 |
| abstract_inverted_index.{p^2}$ | 31 |
| abstract_inverted_index.integer | 7, 13 |
| abstract_inverted_index.$p\equiv | 33 |
| abstract_inverted_index.improved | 57 |
| abstract_inverted_index.assumption | 38 |
| abstract_inverted_index.conjecture. | 42 |
| abstract_inverted_index.$a^{p-1}\not | 28 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.89086082 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |