Nonlinear Conjugate Gradient Methods for Optimization of Set-Valued Mappings of Finite Cardinality Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.20168
This article presents nonlinear conjugate gradient methods for finding local weakly minimal points of set-valued optimization problems under a lower set less ordering relation. The set-valued objective function of the optimization problem under consideration is defined by finitely many continuously differentiable vector-valued functions. For such optimization problems, at first, we propose a general scheme for nonlinear conjugate gradient methods and then introduce Dai-Yuan, Polak-Ribi{è}re-Polyak, and Hestenes-Stiefel conjugate gradient parameters for set-valued functions. Toward deriving the general scheme, we introduce a condition of sufficient decrease and Wolfe line searches for set-valued functions. For a given sequence of descent directions of a set-valued function, it is found that if the proposed standard Wolfe line search technique is employed, then the generated sequence of iterates for set optimization follows a Zoutendijk-like condition. With the help of the derived Zoutendijk-like condition, we report that all the proposed nonlinear conjugate gradient schemes are globally convergent under usual assumptions. It is important to note that the ordering cone used in the entire study is not restricted to be finitely generated, and no regularity assumption on the solution set of the problem is required for any of the reported convergence analyses. Finally, we demonstrate the performance of the proposed methods through numerical experiments. In the numerical experiments, we demonstrate the effectiveness of the proposed methods not only on the commonly used test instances for set optimization but also on a few newly introduced problems under general ordering cones that are neither nonnegative hyper-octant nor finitely generated.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.20168
- https://arxiv.org/pdf/2412.20168
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405955657
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405955657Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.20168Digital Object Identifier
- Title
-
Nonlinear Conjugate Gradient Methods for Optimization of Set-Valued Mappings of Finite CardinalityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-28Full publication date if available
- Authors
-
Debdas Ghosh, Ravi Raushan, Zai-Yun Peng, Jen‐Chih YaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.20168Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.20168Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.20168Direct OA link when available
- Concepts
-
Cardinality (data modeling), Conjugate gradient method, Set (abstract data type), Conjugate, Nonlinear system, Finite set, Mathematical optimization, Mathematics, Nonlinear conjugate gradient method, Computer science, Gradient descent, Mathematical analysis, Artificial intelligence, Data mining, Programming language, Physics, Quantum mechanics, Artificial neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405955657 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.20168 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.20168 |
| ids.openalex | https://openalex.org/W4405955657 |
| fwci | |
| type | preprint |
| title | Nonlinear Conjugate Gradient Methods for Optimization of Set-Valued Mappings of Finite Cardinality |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10545 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Optimization and Variational Analysis |
| topics[1].id | https://openalex.org/T10963 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9939000010490417 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2612 |
| topics[1].subfield.display_name | Numerical Analysis |
| topics[1].display_name | Advanced Optimization Algorithms Research |
| topics[2].id | https://openalex.org/T12661 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9837999939918518 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2612 |
| topics[2].subfield.display_name | Numerical Analysis |
| topics[2].display_name | Iterative Methods for Nonlinear Equations |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C87117476 |
| concepts[0].level | 2 |
| concepts[0].score | 0.863689661026001 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q362383 |
| concepts[0].display_name | Cardinality (data modeling) |
| concepts[1].id | https://openalex.org/C81184566 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7355661392211914 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1191895 |
| concepts[1].display_name | Conjugate gradient method |
| concepts[2].id | https://openalex.org/C177264268 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6463265419006348 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[2].display_name | Set (abstract data type) |
| concepts[3].id | https://openalex.org/C197336794 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6155709028244019 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5161150 |
| concepts[3].display_name | Conjugate |
| concepts[4].id | https://openalex.org/C158622935 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6109200716018677 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[4].display_name | Nonlinear system |
| concepts[5].id | https://openalex.org/C162392398 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5078502297401428 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q272404 |
| concepts[5].display_name | Finite set |
| concepts[6].id | https://openalex.org/C126255220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4914478063583374 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[6].display_name | Mathematical optimization |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.48724165558815 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C26362088 |
| concepts[8].level | 4 |
| concepts[8].score | 0.46491318941116333 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17086453 |
| concepts[8].display_name | Nonlinear conjugate gradient method |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.41321861743927 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C153258448 |
| concepts[10].level | 3 |
| concepts[10].score | 0.16853317618370056 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[10].display_name | Gradient descent |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09811213612556458 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.087338387966156 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.05586898326873779 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.05362775921821594 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.05235481262207031 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C50644808 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[17].display_name | Artificial neural network |
| keywords[0].id | https://openalex.org/keywords/cardinality |
| keywords[0].score | 0.863689661026001 |
| keywords[0].display_name | Cardinality (data modeling) |
| keywords[1].id | https://openalex.org/keywords/conjugate-gradient-method |
| keywords[1].score | 0.7355661392211914 |
| keywords[1].display_name | Conjugate gradient method |
| keywords[2].id | https://openalex.org/keywords/set |
| keywords[2].score | 0.6463265419006348 |
| keywords[2].display_name | Set (abstract data type) |
| keywords[3].id | https://openalex.org/keywords/conjugate |
| keywords[3].score | 0.6155709028244019 |
| keywords[3].display_name | Conjugate |
| keywords[4].id | https://openalex.org/keywords/nonlinear-system |
| keywords[4].score | 0.6109200716018677 |
| keywords[4].display_name | Nonlinear system |
| keywords[5].id | https://openalex.org/keywords/finite-set |
| keywords[5].score | 0.5078502297401428 |
| keywords[5].display_name | Finite set |
| keywords[6].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[6].score | 0.4914478063583374 |
| keywords[6].display_name | Mathematical optimization |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.48724165558815 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/nonlinear-conjugate-gradient-method |
| keywords[8].score | 0.46491318941116333 |
| keywords[8].display_name | Nonlinear conjugate gradient method |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.41321861743927 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/gradient-descent |
| keywords[10].score | 0.16853317618370056 |
| keywords[10].display_name | Gradient descent |
| keywords[11].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[11].score | 0.09811213612556458 |
| keywords[11].display_name | Mathematical analysis |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.087338387966156 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.05586898326873779 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/programming-language |
| keywords[14].score | 0.05362775921821594 |
| keywords[14].display_name | Programming language |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.05235481262207031 |
| keywords[15].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.20168 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.20168 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.20168 |
| locations[1].id | doi:10.48550/arxiv.2412.20168 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.20168 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5087372767 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2419-7082 |
| authorships[0].author.display_name | Debdas Ghosh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ghosh, Debdas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056912549 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0664-4267 |
| authorships[1].author.display_name | Ravi Raushan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Raushan, Ravi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102442153 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zai-Yun Peng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peng, Zai-Yun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5050520268 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9041-3375 |
| authorships[3].author.display_name | Jen‐Chih Yao |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yao, Jen-Chih |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.20168 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-01T00:00:00 |
| display_name | Nonlinear Conjugate Gradient Methods for Optimization of Set-Valued Mappings of Finite Cardinality |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10545 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Optimization and Variational Analysis |
| related_works | https://openalex.org/W2098528027, https://openalex.org/W2375129592, https://openalex.org/W2060532089, https://openalex.org/W3159557833, https://openalex.org/W2005717169, https://openalex.org/W2183734858, https://openalex.org/W4387168483, https://openalex.org/W4319027779, https://openalex.org/W2941778027, https://openalex.org/W1503783781 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.20168 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.20168 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.20168 |
| primary_location.id | pmh:oai:arXiv.org:2412.20168 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.20168 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.20168 |
| publication_date | 2024-12-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 18, 51, 79, 92, 99, 126, 232 |
| abstract_inverted_index.In | 206 |
| abstract_inverted_index.It | 153 |
| abstract_inverted_index.at | 47 |
| abstract_inverted_index.be | 171 |
| abstract_inverted_index.by | 36 |
| abstract_inverted_index.if | 106 |
| abstract_inverted_index.in | 163 |
| abstract_inverted_index.is | 34, 103, 114, 154, 167, 185 |
| abstract_inverted_index.it | 102 |
| abstract_inverted_index.no | 175 |
| abstract_inverted_index.of | 13, 28, 81, 95, 98, 120, 132, 182, 189, 199, 214 |
| abstract_inverted_index.on | 178, 220, 231 |
| abstract_inverted_index.to | 156, 170 |
| abstract_inverted_index.we | 49, 77, 137, 195, 210 |
| abstract_inverted_index.For | 43, 91 |
| abstract_inverted_index.The | 24 |
| abstract_inverted_index.all | 140 |
| abstract_inverted_index.and | 59, 64, 84, 174 |
| abstract_inverted_index.any | 188 |
| abstract_inverted_index.are | 147, 242 |
| abstract_inverted_index.but | 229 |
| abstract_inverted_index.few | 233 |
| abstract_inverted_index.for | 7, 54, 69, 88, 122, 187, 226 |
| abstract_inverted_index.nor | 246 |
| abstract_inverted_index.not | 168, 218 |
| abstract_inverted_index.set | 20, 123, 181, 227 |
| abstract_inverted_index.the | 29, 74, 107, 117, 130, 133, 141, 159, 164, 179, 183, 190, 197, 200, 207, 212, 215, 221 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.With | 129 |
| abstract_inverted_index.also | 230 |
| abstract_inverted_index.cone | 161 |
| abstract_inverted_index.help | 131 |
| abstract_inverted_index.less | 21 |
| abstract_inverted_index.line | 86, 111 |
| abstract_inverted_index.many | 38 |
| abstract_inverted_index.note | 157 |
| abstract_inverted_index.only | 219 |
| abstract_inverted_index.such | 44 |
| abstract_inverted_index.test | 224 |
| abstract_inverted_index.that | 105, 139, 158, 241 |
| abstract_inverted_index.then | 60, 116 |
| abstract_inverted_index.used | 162, 223 |
| abstract_inverted_index.Wolfe | 85, 110 |
| abstract_inverted_index.cones | 240 |
| abstract_inverted_index.found | 104 |
| abstract_inverted_index.given | 93 |
| abstract_inverted_index.local | 9 |
| abstract_inverted_index.lower | 19 |
| abstract_inverted_index.newly | 234 |
| abstract_inverted_index.study | 166 |
| abstract_inverted_index.under | 17, 32, 150, 237 |
| abstract_inverted_index.usual | 151 |
| abstract_inverted_index.Toward | 72 |
| abstract_inverted_index.entire | 165 |
| abstract_inverted_index.first, | 48 |
| abstract_inverted_index.points | 12 |
| abstract_inverted_index.report | 138 |
| abstract_inverted_index.scheme | 53 |
| abstract_inverted_index.search | 112 |
| abstract_inverted_index.weakly | 10 |
| abstract_inverted_index.article | 1 |
| abstract_inverted_index.defined | 35 |
| abstract_inverted_index.derived | 134 |
| abstract_inverted_index.descent | 96 |
| abstract_inverted_index.finding | 8 |
| abstract_inverted_index.follows | 125 |
| abstract_inverted_index.general | 52, 75, 238 |
| abstract_inverted_index.methods | 6, 58, 202, 217 |
| abstract_inverted_index.minimal | 11 |
| abstract_inverted_index.neither | 243 |
| abstract_inverted_index.problem | 31, 184 |
| abstract_inverted_index.propose | 50 |
| abstract_inverted_index.scheme, | 76 |
| abstract_inverted_index.schemes | 146 |
| abstract_inverted_index.through | 203 |
| abstract_inverted_index.Finally, | 194 |
| abstract_inverted_index.commonly | 222 |
| abstract_inverted_index.decrease | 83 |
| abstract_inverted_index.deriving | 73 |
| abstract_inverted_index.finitely | 37, 172, 247 |
| abstract_inverted_index.function | 27 |
| abstract_inverted_index.globally | 148 |
| abstract_inverted_index.gradient | 5, 57, 67, 145 |
| abstract_inverted_index.iterates | 121 |
| abstract_inverted_index.ordering | 22, 160, 239 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.problems | 16, 236 |
| abstract_inverted_index.proposed | 108, 142, 201, 216 |
| abstract_inverted_index.reported | 191 |
| abstract_inverted_index.required | 186 |
| abstract_inverted_index.searches | 87 |
| abstract_inverted_index.sequence | 94, 119 |
| abstract_inverted_index.solution | 180 |
| abstract_inverted_index.standard | 109 |
| abstract_inverted_index.Dai-Yuan, | 62 |
| abstract_inverted_index.analyses. | 193 |
| abstract_inverted_index.condition | 80 |
| abstract_inverted_index.conjugate | 4, 56, 66, 144 |
| abstract_inverted_index.employed, | 115 |
| abstract_inverted_index.function, | 101 |
| abstract_inverted_index.generated | 118 |
| abstract_inverted_index.important | 155 |
| abstract_inverted_index.instances | 225 |
| abstract_inverted_index.introduce | 61, 78 |
| abstract_inverted_index.nonlinear | 3, 55, 143 |
| abstract_inverted_index.numerical | 204, 208 |
| abstract_inverted_index.objective | 26 |
| abstract_inverted_index.problems, | 46 |
| abstract_inverted_index.relation. | 23 |
| abstract_inverted_index.technique | 113 |
| abstract_inverted_index.assumption | 177 |
| abstract_inverted_index.condition, | 136 |
| abstract_inverted_index.condition. | 128 |
| abstract_inverted_index.convergent | 149 |
| abstract_inverted_index.directions | 97 |
| abstract_inverted_index.functions. | 42, 71, 90 |
| abstract_inverted_index.generated, | 173 |
| abstract_inverted_index.generated. | 248 |
| abstract_inverted_index.introduced | 235 |
| abstract_inverted_index.parameters | 68 |
| abstract_inverted_index.regularity | 176 |
| abstract_inverted_index.restricted | 169 |
| abstract_inverted_index.set-valued | 14, 25, 70, 89, 100 |
| abstract_inverted_index.sufficient | 82 |
| abstract_inverted_index.convergence | 192 |
| abstract_inverted_index.demonstrate | 196, 211 |
| abstract_inverted_index.nonnegative | 244 |
| abstract_inverted_index.performance | 198 |
| abstract_inverted_index.assumptions. | 152 |
| abstract_inverted_index.continuously | 39 |
| abstract_inverted_index.experiments, | 209 |
| abstract_inverted_index.experiments. | 205 |
| abstract_inverted_index.hyper-octant | 245 |
| abstract_inverted_index.optimization | 15, 30, 45, 124, 228 |
| abstract_inverted_index.consideration | 33 |
| abstract_inverted_index.effectiveness | 213 |
| abstract_inverted_index.vector-valued | 41 |
| abstract_inverted_index.differentiable | 40 |
| abstract_inverted_index.Zoutendijk-like | 127, 135 |
| abstract_inverted_index.Hestenes-Stiefel | 65 |
| abstract_inverted_index.Polak-Ribi{è}re-Polyak, | 63 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |