Nonlinear predictive model selection and model averaging using information criteria Article Swipe
Yuanlin Gu
,
Hua‐Liang Wei
,
M. Balikhin
·
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1080/21642583.2018.1496042
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1080/21642583.2018.1496042
This paper is concerned with the model selection and model averaging problems in system identification and data-driven modelling for nonlinear systems. Given a set of data, the objective of model selection is to evaluate a series of candidate models and determine which one best presents the data. Three commonly used criteria, namely, Akaike information criterion, Bayesian information criterion and an adjustable prediction error sum of squares (APRESS) are investigated and their performance in model selection and model averaging is evaluated via a number of case studies using both simulation and real data. The results show that APRESS produces better models in terms of generalization performance and model complexity.
Related Topics
Concepts
Akaike information criterion
Bayesian information criterion
Information Criteria
Model selection
Generalization
Selection (genetic algorithm)
Computer science
Set (abstract data type)
Nonlinear system
Data set
Data mining
Bayesian probability
Identification (biology)
Series (stratigraphy)
Machine learning
Mathematics
Artificial intelligence
Botany
Mathematical analysis
Quantum mechanics
Programming language
Paleontology
Biology
Physics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/21642583.2018.1496042
- https://www.tandfonline.com/doi/pdf/10.1080/21642583.2018.1496042?needAccess=true
- OA Status
- gold
- Cited By
- 38
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2832688480
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2832688480Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/21642583.2018.1496042Digital Object Identifier
- Title
-
Nonlinear predictive model selection and model averaging using information criteriaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Yuanlin Gu, Hua‐Liang Wei, M. BalikhinList of authors in order
- Landing page
-
https://doi.org/10.1080/21642583.2018.1496042Publisher landing page
- PDF URL
-
https://www.tandfonline.com/doi/pdf/10.1080/21642583.2018.1496042?needAccess=trueDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.tandfonline.com/doi/pdf/10.1080/21642583.2018.1496042?needAccess=trueDirect OA link when available
- Concepts
-
Akaike information criterion, Bayesian information criterion, Information Criteria, Model selection, Generalization, Selection (genetic algorithm), Computer science, Set (abstract data type), Nonlinear system, Data set, Data mining, Bayesian probability, Identification (biology), Series (stratigraphy), Machine learning, Mathematics, Artificial intelligence, Botany, Mathematical analysis, Quantum mechanics, Programming language, Paleontology, Biology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
38Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 9, 2023: 11, 2022: 6, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2832688480 |
|---|---|
| doi | https://doi.org/10.1080/21642583.2018.1496042 |
| ids.doi | https://doi.org/10.1080/21642583.2018.1496042 |
| ids.mag | 2832688480 |
| ids.openalex | https://openalex.org/W2832688480 |
| fwci | 1.33454208 |
| type | article |
| title | Nonlinear predictive model selection and model averaging using information criteria |
| awards[0].id | https://openalex.org/G3058143276 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/I011056/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[1].id | https://openalex.org/G8495396123 |
| awards[1].funder_id | https://openalex.org/F4320334627 |
| awards[1].display_name | |
| awards[1].funder_award_id | EP/H00453X/1 |
| awards[1].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | 1 |
| biblio.volume | 6 |
| biblio.last_page | 328 |
| biblio.first_page | 319 |
| topics[0].id | https://openalex.org/T11236 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Control Systems and Identification |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| topics[2].id | https://openalex.org/T10711 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9912999868392944 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Target Tracking and Data Fusion in Sensor Networks |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list.value | 950 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1165 |
| apc_paid.value | 950 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1165 |
| concepts[0].id | https://openalex.org/C126674687 |
| concepts[0].level | 2 |
| concepts[0].score | 0.909244954586029 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1662573 |
| concepts[0].display_name | Akaike information criterion |
| concepts[1].id | https://openalex.org/C168136583 |
| concepts[1].level | 2 |
| concepts[1].score | 0.85057532787323 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1988242 |
| concepts[1].display_name | Bayesian information criterion |
| concepts[2].id | https://openalex.org/C2776709221 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7357373237609863 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6031040 |
| concepts[2].display_name | Information Criteria |
| concepts[3].id | https://openalex.org/C93959086 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7098070383071899 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6888345 |
| concepts[3].display_name | Model selection |
| concepts[4].id | https://openalex.org/C177148314 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6400771141052246 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[4].display_name | Generalization |
| concepts[5].id | https://openalex.org/C81917197 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6177770495414734 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[5].display_name | Selection (genetic algorithm) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5742418169975281 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5262277126312256 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C158622935 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5244781374931335 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[8].display_name | Nonlinear system |
| concepts[9].id | https://openalex.org/C58489278 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5074517130851746 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[9].display_name | Data set |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4980909824371338 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C107673813 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4760403633117676 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[11].display_name | Bayesian probability |
| concepts[12].id | https://openalex.org/C116834253 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4340732991695404 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[12].display_name | Identification (biology) |
| concepts[13].id | https://openalex.org/C143724316 |
| concepts[13].level | 2 |
| concepts[13].score | 0.42621198296546936 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[13].display_name | Series (stratigraphy) |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.34300532937049866 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.30792945623397827 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.2815186381340027 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C59822182 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[17].display_name | Botany |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C151730666 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[21].display_name | Paleontology |
| concepts[22].id | https://openalex.org/C86803240 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[22].display_name | Biology |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/akaike-information-criterion |
| keywords[0].score | 0.909244954586029 |
| keywords[0].display_name | Akaike information criterion |
| keywords[1].id | https://openalex.org/keywords/bayesian-information-criterion |
| keywords[1].score | 0.85057532787323 |
| keywords[1].display_name | Bayesian information criterion |
| keywords[2].id | https://openalex.org/keywords/information-criteria |
| keywords[2].score | 0.7357373237609863 |
| keywords[2].display_name | Information Criteria |
| keywords[3].id | https://openalex.org/keywords/model-selection |
| keywords[3].score | 0.7098070383071899 |
| keywords[3].display_name | Model selection |
| keywords[4].id | https://openalex.org/keywords/generalization |
| keywords[4].score | 0.6400771141052246 |
| keywords[4].display_name | Generalization |
| keywords[5].id | https://openalex.org/keywords/selection |
| keywords[5].score | 0.6177770495414734 |
| keywords[5].display_name | Selection (genetic algorithm) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5742418169975281 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.5262277126312256 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/nonlinear-system |
| keywords[8].score | 0.5244781374931335 |
| keywords[8].display_name | Nonlinear system |
| keywords[9].id | https://openalex.org/keywords/data-set |
| keywords[9].score | 0.5074517130851746 |
| keywords[9].display_name | Data set |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.4980909824371338 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/bayesian-probability |
| keywords[11].score | 0.4760403633117676 |
| keywords[11].display_name | Bayesian probability |
| keywords[12].id | https://openalex.org/keywords/identification |
| keywords[12].score | 0.4340732991695404 |
| keywords[12].display_name | Identification (biology) |
| keywords[13].id | https://openalex.org/keywords/series |
| keywords[13].score | 0.42621198296546936 |
| keywords[13].display_name | Series (stratigraphy) |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.34300532937049866 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.30792945623397827 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.2815186381340027 |
| keywords[16].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1080/21642583.2018.1496042 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2506060491 |
| locations[0].source.issn | 2164-2583 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2164-2583 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Systems Science & Control Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/21642583.2018.1496042?needAccess=true |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Systems Science & Control Engineering |
| locations[0].landing_page_url | https://doi.org/10.1080/21642583.2018.1496042 |
| locations[1].id | pmh:oai:doaj.org/article:5222c7f5d8944c9fa9eb9b40b2cfd456 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Systems Science & Control Engineering, Vol 6, Iss 1, Pp 319-328 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/5222c7f5d8944c9fa9eb9b40b2cfd456 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100706691 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8444-7034 |
| authorships[0].author.display_name | Yuanlin Gu |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I91136226 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK |
| authorships[0].institutions[0].id | https://openalex.org/I91136226 |
| authorships[0].institutions[0].ror | https://ror.org/05krs5044 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I91136226 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Sheffield |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuanlin Gu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK |
| authorships[1].author.id | https://openalex.org/A5026841543 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4704-7346 |
| authorships[1].author.display_name | Hua‐Liang Wei |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I91136226 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK |
| authorships[1].institutions[0].id | https://openalex.org/I91136226 |
| authorships[1].institutions[0].ror | https://ror.org/05krs5044 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I91136226 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Sheffield |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hua-Liang Wei |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK |
| authorships[2].author.id | https://openalex.org/A5066210912 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | M. Balikhin |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I91136226 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK |
| authorships[2].institutions[0].id | https://openalex.org/I91136226 |
| authorships[2].institutions[0].ror | https://ror.org/05krs5044 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I91136226 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Sheffield |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Michael M. Balikhin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.tandfonline.com/doi/pdf/10.1080/21642583.2018.1496042?needAccess=true |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Nonlinear predictive model selection and model averaging using information criteria |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11236 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Control Systems and Identification |
| related_works | https://openalex.org/W2114625140, https://openalex.org/W1968886786, https://openalex.org/W2509820422, https://openalex.org/W304661108, https://openalex.org/W2607006239, https://openalex.org/W2963415778, https://openalex.org/W3122388856, https://openalex.org/W1502087262, https://openalex.org/W2033907215, https://openalex.org/W3111001581 |
| cited_by_count | 38 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/21642583.2018.1496042 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2506060491 |
| best_oa_location.source.issn | 2164-2583 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2164-2583 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Systems Science & Control Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/21642583.2018.1496042?needAccess=true |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Systems Science & Control Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1080/21642583.2018.1496042 |
| primary_location.id | doi:10.1080/21642583.2018.1496042 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2506060491 |
| primary_location.source.issn | 2164-2583 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2164-2583 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Systems Science & Control Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/21642583.2018.1496042?needAccess=true |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Systems Science & Control Engineering |
| primary_location.landing_page_url | https://doi.org/10.1080/21642583.2018.1496042 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W1966827292, https://openalex.org/W2142635246, https://openalex.org/W2058815839, https://openalex.org/W2050297026, https://openalex.org/W3125518084, https://openalex.org/W1585753181, https://openalex.org/W2168478987, https://openalex.org/W2044692866, https://openalex.org/W2027169855, https://openalex.org/W2129712515, https://openalex.org/W1538292829, https://openalex.org/W4292963524, https://openalex.org/W1994672023, https://openalex.org/W2158196600, https://openalex.org/W2096650374, https://openalex.org/W1981295458, https://openalex.org/W2026725566, https://openalex.org/W2028847290, https://openalex.org/W2102380305, https://openalex.org/W2171247088, https://openalex.org/W2921430350, https://openalex.org/W2077430530, https://openalex.org/W2050263393, https://openalex.org/W1990381576, https://openalex.org/W1998983070, https://openalex.org/W2170287445, https://openalex.org/W2048776980, https://openalex.org/W4255056999, https://openalex.org/W2146081698, https://openalex.org/W4211177544, https://openalex.org/W2590687529, https://openalex.org/W2109844396, https://openalex.org/W1978053056, https://openalex.org/W2136582936, https://openalex.org/W1980370194, https://openalex.org/W2203914624, https://openalex.org/W2002136951, https://openalex.org/W1860366881, https://openalex.org/W2101846955, https://openalex.org/W2158722298, https://openalex.org/W2168175751, https://openalex.org/W2958569496, https://openalex.org/W2607668475, https://openalex.org/W2131842864, https://openalex.org/W1969885422, https://openalex.org/W2019448438, https://openalex.org/W2098955183, https://openalex.org/W2003105196, https://openalex.org/W2088978982, https://openalex.org/W2092587625, https://openalex.org/W1975279341, https://openalex.org/W2725607297, https://openalex.org/W2117076645, https://openalex.org/W2140971281, https://openalex.org/W1968371014, https://openalex.org/W2913465992, https://openalex.org/W2112081648, https://openalex.org/W3021601205 |
| referenced_works_count | 58 |
| abstract_inverted_index.a | 22, 34, 81 |
| abstract_inverted_index.an | 59 |
| abstract_inverted_index.in | 12, 72, 100 |
| abstract_inverted_index.is | 2, 31, 78 |
| abstract_inverted_index.of | 24, 28, 36, 64, 83, 102 |
| abstract_inverted_index.to | 32 |
| abstract_inverted_index.The | 92 |
| abstract_inverted_index.and | 8, 15, 39, 58, 69, 75, 89, 105 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.for | 18 |
| abstract_inverted_index.one | 42 |
| abstract_inverted_index.set | 23 |
| abstract_inverted_index.sum | 63 |
| abstract_inverted_index.the | 5, 26, 45 |
| abstract_inverted_index.via | 80 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.best | 43 |
| abstract_inverted_index.both | 87 |
| abstract_inverted_index.case | 84 |
| abstract_inverted_index.real | 90 |
| abstract_inverted_index.show | 94 |
| abstract_inverted_index.that | 95 |
| abstract_inverted_index.used | 49 |
| abstract_inverted_index.with | 4 |
| abstract_inverted_index.Given | 21 |
| abstract_inverted_index.Three | 47 |
| abstract_inverted_index.data, | 25 |
| abstract_inverted_index.data. | 46, 91 |
| abstract_inverted_index.error | 62 |
| abstract_inverted_index.model | 6, 9, 29, 73, 76, 106 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.terms | 101 |
| abstract_inverted_index.their | 70 |
| abstract_inverted_index.using | 86 |
| abstract_inverted_index.which | 41 |
| abstract_inverted_index.APRESS | 96 |
| abstract_inverted_index.Akaike | 52 |
| abstract_inverted_index.better | 98 |
| abstract_inverted_index.models | 38, 99 |
| abstract_inverted_index.number | 82 |
| abstract_inverted_index.series | 35 |
| abstract_inverted_index.system | 13 |
| abstract_inverted_index.namely, | 51 |
| abstract_inverted_index.results | 93 |
| abstract_inverted_index.squares | 65 |
| abstract_inverted_index.studies | 85 |
| abstract_inverted_index.(APRESS) | 66 |
| abstract_inverted_index.Bayesian | 55 |
| abstract_inverted_index.commonly | 48 |
| abstract_inverted_index.evaluate | 33 |
| abstract_inverted_index.presents | 44 |
| abstract_inverted_index.problems | 11 |
| abstract_inverted_index.produces | 97 |
| abstract_inverted_index.systems. | 20 |
| abstract_inverted_index.averaging | 10, 77 |
| abstract_inverted_index.candidate | 37 |
| abstract_inverted_index.concerned | 3 |
| abstract_inverted_index.criteria, | 50 |
| abstract_inverted_index.criterion | 57 |
| abstract_inverted_index.determine | 40 |
| abstract_inverted_index.evaluated | 79 |
| abstract_inverted_index.modelling | 17 |
| abstract_inverted_index.nonlinear | 19 |
| abstract_inverted_index.objective | 27 |
| abstract_inverted_index.selection | 7, 30, 74 |
| abstract_inverted_index.adjustable | 60 |
| abstract_inverted_index.criterion, | 54 |
| abstract_inverted_index.prediction | 61 |
| abstract_inverted_index.simulation | 88 |
| abstract_inverted_index.complexity. | 107 |
| abstract_inverted_index.data-driven | 16 |
| abstract_inverted_index.information | 53, 56 |
| abstract_inverted_index.performance | 71, 104 |
| abstract_inverted_index.investigated | 68 |
| abstract_inverted_index.generalization | 103 |
| abstract_inverted_index.identification | 14 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 93 |
| corresponding_author_ids | https://openalex.org/A5026841543 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I91136226 |
| citation_normalized_percentile.value | 0.81257374 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |