Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.13954
We study high-probability convergence in online learning, in the presence of heavy-tailed noise. To combat the heavy tails, a general framework of nonlinear SGD methods is considered, subsuming several popular nonlinearities like sign, quantization, component-wise and joint clipping. In our work the nonlinearity is treated in a black-box manner, allowing us to establish unified guarantees for a broad range of nonlinear methods. For symmetric noise and non-convex costs we establish convergence of gradient norm-squared, at a rate $\widetilde{\mathcal{O}}(t^{-1/4})$, while for the last iterate of strongly convex costs we establish convergence to the population optima, at a rate $\mathcal{O}(t^{-ζ})$, where $ζ\in (0,1)$ depends on noise and problem parameters. Further, if the noise is a (biased) mixture of symmetric and non-symmetric components, we show convergence to a neighbourhood of stationarity, whose size depends on the mixture coefficient, nonlinearity and noise. Compared to state-of-the-art, who only consider clipping and require unbiased noise with bounded $p$-th moments, $p \in (1,2]$, we provide guarantees for a broad class of nonlinearities, without any assumptions on noise moments. While the rate exponents in state-of-the-art depend on noise moments and vanish as $p \rightarrow 1$, our exponents are constant and strictly better whenever $p < 6/5$ for non-convex and $p < 8/7$ for strongly convex costs. Experiments validate our theory, showing that clipping is not always the optimal nonlinearity, further underlining the value of a general framework.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.13954
- https://arxiv.org/pdf/2410.13954
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403995417
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403995417Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.13954Digital Object Identifier
- Title
-
Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability GuaranteesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-17Full publication date if available
- Authors
-
Aleksandar Armacki, Shuhua Yu, Pranay Sharma, Gauri Joshi, Dragana Bajović, Dušan Jakovetić, Soummya KarList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.13954Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.13954Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.13954Direct OA link when available
- Concepts
-
Nonlinear system, Stochastic gradient descent, Noise (video), Gradient descent, Computer science, Applied mathematics, Descent (aeronautics), Statistical physics, Mathematical optimization, Mathematics, Physics, Artificial intelligence, Artificial neural network, Meteorology, Image (mathematics), Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403995417 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.13954 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.13954 |
| ids.openalex | https://openalex.org/W4403995417 |
| fwci | |
| type | preprint |
| title | Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10067 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.8956999778747559 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2003 |
| topics[0].subfield.display_name | Finance |
| topics[0].display_name | Stochastic processes and financial applications |
| topics[1].id | https://openalex.org/T11012 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.7710999846458435 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Gas Dynamics and Kinetic Theory |
| topics[2].id | https://openalex.org/T10711 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7249000072479248 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Target Tracking and Data Fusion in Sensor Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C158622935 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6750991344451904 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[0].display_name | Nonlinear system |
| concepts[1].id | https://openalex.org/C206688291 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5971149206161499 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7617819 |
| concepts[1].display_name | Stochastic gradient descent |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5531979203224182 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C153258448 |
| concepts[3].level | 3 |
| concepts[3].score | 0.49425625801086426 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[3].display_name | Gradient descent |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4505331516265869 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C28826006 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4353156089782715 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[5].display_name | Applied mathematics |
| concepts[6].id | https://openalex.org/C2776637919 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42291587591171265 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q624380 |
| concepts[6].display_name | Descent (aeronautics) |
| concepts[7].id | https://openalex.org/C121864883 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3950270712375641 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[7].display_name | Statistical physics |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36513054370880127 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3505318760871887 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.15185171365737915 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1446412205696106 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C50644808 |
| concepts[12].level | 2 |
| concepts[12].score | 0.08816716074943542 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[12].display_name | Artificial neural network |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07027113437652588 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/nonlinear-system |
| keywords[0].score | 0.6750991344451904 |
| keywords[0].display_name | Nonlinear system |
| keywords[1].id | https://openalex.org/keywords/stochastic-gradient-descent |
| keywords[1].score | 0.5971149206161499 |
| keywords[1].display_name | Stochastic gradient descent |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.5531979203224182 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/gradient-descent |
| keywords[3].score | 0.49425625801086426 |
| keywords[3].display_name | Gradient descent |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4505331516265869 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/applied-mathematics |
| keywords[5].score | 0.4353156089782715 |
| keywords[5].display_name | Applied mathematics |
| keywords[6].id | https://openalex.org/keywords/descent |
| keywords[6].score | 0.42291587591171265 |
| keywords[6].display_name | Descent (aeronautics) |
| keywords[7].id | https://openalex.org/keywords/statistical-physics |
| keywords[7].score | 0.3950270712375641 |
| keywords[7].display_name | Statistical physics |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.36513054370880127 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.3505318760871887 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.15185171365737915 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.1446412205696106 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[12].score | 0.08816716074943542 |
| keywords[12].display_name | Artificial neural network |
| keywords[13].id | https://openalex.org/keywords/meteorology |
| keywords[13].score | 0.07027113437652588 |
| keywords[13].display_name | Meteorology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.13954 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.13954 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.13954 |
| locations[1].id | doi:10.48550/arxiv.2410.13954 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.13954 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5043355874 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7916-585X |
| authorships[0].author.display_name | Aleksandar Armacki |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Armacki, Aleksandar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100528028 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shuhua Yu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu, Shuhua |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5028196076 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-8027-7913 |
| authorships[2].author.display_name | Pranay Sharma |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sharma, Pranay |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5067441201 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6372-9697 |
| authorships[3].author.display_name | Gauri Joshi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Joshi, Gauri |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5077197425 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1783-8734 |
| authorships[4].author.display_name | Dragana Bajović |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bajovic, Dragana |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5070836307 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3497-5589 |
| authorships[5].author.display_name | Dušan Jakovetić |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jakovetic, Dusan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5077268766 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8060-5581 |
| authorships[6].author.display_name | Soummya Kar |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Kar, Soummya |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.13954 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10067 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.8956999778747559 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2003 |
| primary_topic.subfield.display_name | Finance |
| primary_topic.display_name | Stochastic processes and financial applications |
| related_works | https://openalex.org/W4206903459, https://openalex.org/W2754816816, https://openalex.org/W4366280654, https://openalex.org/W3160167280, https://openalex.org/W4231621013, https://openalex.org/W4362706668, https://openalex.org/W2015288657, https://openalex.org/W3008318776, https://openalex.org/W1977633006, https://openalex.org/W2041416246 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.13954 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.13954 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.13954 |
| primary_location.id | pmh:oai:arXiv.org:2410.13954 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.13954 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.13954 |
| publication_date | 2024-10-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 18, 46, 56, 75, 95, 112, 124, 160, 226 |
| abstract_inverted_index.$p | 153, 184, 195, 201 |
| abstract_inverted_index.In | 38 |
| abstract_inverted_index.To | 13 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 183 |
| abstract_inverted_index.at | 74, 94 |
| abstract_inverted_index.if | 108 |
| abstract_inverted_index.in | 4, 7, 45, 175 |
| abstract_inverted_index.is | 25, 43, 111, 215 |
| abstract_inverted_index.of | 10, 21, 59, 71, 83, 115, 126, 163, 225 |
| abstract_inverted_index.on | 102, 131, 168, 178 |
| abstract_inverted_index.to | 51, 90, 123, 139 |
| abstract_inverted_index.us | 50 |
| abstract_inverted_index.we | 68, 87, 120, 156 |
| abstract_inverted_index.1$, | 186 |
| abstract_inverted_index.For | 62 |
| abstract_inverted_index.SGD | 23 |
| abstract_inverted_index.\in | 154 |
| abstract_inverted_index.and | 35, 65, 104, 117, 136, 145, 181, 191, 200 |
| abstract_inverted_index.any | 166 |
| abstract_inverted_index.are | 189 |
| abstract_inverted_index.for | 55, 79, 159, 198, 204 |
| abstract_inverted_index.not | 216 |
| abstract_inverted_index.our | 39, 187, 210 |
| abstract_inverted_index.the | 8, 15, 41, 80, 91, 109, 132, 172, 218, 223 |
| abstract_inverted_index.who | 141 |
| abstract_inverted_index.< | 196, 202 |
| abstract_inverted_index.6/5$ | 197 |
| abstract_inverted_index.8/7$ | 203 |
| abstract_inverted_index.last | 81 |
| abstract_inverted_index.like | 31 |
| abstract_inverted_index.only | 142 |
| abstract_inverted_index.rate | 76, 96, 173 |
| abstract_inverted_index.show | 121 |
| abstract_inverted_index.size | 129 |
| abstract_inverted_index.that | 213 |
| abstract_inverted_index.with | 149 |
| abstract_inverted_index.work | 40 |
| abstract_inverted_index.While | 171 |
| abstract_inverted_index.broad | 57, 161 |
| abstract_inverted_index.class | 162 |
| abstract_inverted_index.costs | 67, 86 |
| abstract_inverted_index.heavy | 16 |
| abstract_inverted_index.joint | 36 |
| abstract_inverted_index.noise | 64, 103, 110, 148, 169, 179 |
| abstract_inverted_index.range | 58 |
| abstract_inverted_index.sign, | 32 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.value | 224 |
| abstract_inverted_index.where | 98 |
| abstract_inverted_index.while | 78 |
| abstract_inverted_index.whose | 128 |
| abstract_inverted_index.$p$-th | 151 |
| abstract_inverted_index.$ζ\in | 99 |
| abstract_inverted_index.(0,1)$ | 100 |
| abstract_inverted_index.always | 217 |
| abstract_inverted_index.better | 193 |
| abstract_inverted_index.combat | 14 |
| abstract_inverted_index.convex | 85, 206 |
| abstract_inverted_index.costs. | 207 |
| abstract_inverted_index.depend | 177 |
| abstract_inverted_index.noise. | 12, 137 |
| abstract_inverted_index.online | 5 |
| abstract_inverted_index.tails, | 17 |
| abstract_inverted_index.vanish | 182 |
| abstract_inverted_index.(1,2]$, | 155 |
| abstract_inverted_index.bounded | 150 |
| abstract_inverted_index.depends | 101, 130 |
| abstract_inverted_index.further | 221 |
| abstract_inverted_index.general | 19, 227 |
| abstract_inverted_index.iterate | 82 |
| abstract_inverted_index.manner, | 48 |
| abstract_inverted_index.methods | 24 |
| abstract_inverted_index.mixture | 114, 133 |
| abstract_inverted_index.moments | 180 |
| abstract_inverted_index.optima, | 93 |
| abstract_inverted_index.optimal | 219 |
| abstract_inverted_index.popular | 29 |
| abstract_inverted_index.problem | 105 |
| abstract_inverted_index.provide | 157 |
| abstract_inverted_index.require | 146 |
| abstract_inverted_index.several | 28 |
| abstract_inverted_index.showing | 212 |
| abstract_inverted_index.theory, | 211 |
| abstract_inverted_index.treated | 44 |
| abstract_inverted_index.unified | 53 |
| abstract_inverted_index.without | 165 |
| abstract_inverted_index.(biased) | 113 |
| abstract_inverted_index.Compared | 138 |
| abstract_inverted_index.Further, | 107 |
| abstract_inverted_index.allowing | 49 |
| abstract_inverted_index.clipping | 144, 214 |
| abstract_inverted_index.consider | 143 |
| abstract_inverted_index.constant | 190 |
| abstract_inverted_index.gradient | 72 |
| abstract_inverted_index.methods. | 61 |
| abstract_inverted_index.moments, | 152 |
| abstract_inverted_index.moments. | 170 |
| abstract_inverted_index.presence | 9 |
| abstract_inverted_index.strictly | 192 |
| abstract_inverted_index.strongly | 84, 205 |
| abstract_inverted_index.unbiased | 147 |
| abstract_inverted_index.validate | 209 |
| abstract_inverted_index.whenever | 194 |
| abstract_inverted_index.black-box | 47 |
| abstract_inverted_index.clipping. | 37 |
| abstract_inverted_index.establish | 52, 69, 88 |
| abstract_inverted_index.exponents | 174, 188 |
| abstract_inverted_index.framework | 20 |
| abstract_inverted_index.learning, | 6 |
| abstract_inverted_index.nonlinear | 22, 60 |
| abstract_inverted_index.subsuming | 27 |
| abstract_inverted_index.symmetric | 63, 116 |
| abstract_inverted_index.framework. | 228 |
| abstract_inverted_index.guarantees | 54, 158 |
| abstract_inverted_index.non-convex | 66, 199 |
| abstract_inverted_index.population | 92 |
| abstract_inverted_index.Experiments | 208 |
| abstract_inverted_index.\rightarrow | 185 |
| abstract_inverted_index.assumptions | 167 |
| abstract_inverted_index.components, | 119 |
| abstract_inverted_index.considered, | 26 |
| abstract_inverted_index.convergence | 3, 70, 89, 122 |
| abstract_inverted_index.parameters. | 106 |
| abstract_inverted_index.underlining | 222 |
| abstract_inverted_index.coefficient, | 134 |
| abstract_inverted_index.heavy-tailed | 11 |
| abstract_inverted_index.nonlinearity | 42, 135 |
| abstract_inverted_index.neighbourhood | 125 |
| abstract_inverted_index.non-symmetric | 118 |
| abstract_inverted_index.nonlinearity, | 220 |
| abstract_inverted_index.norm-squared, | 73 |
| abstract_inverted_index.quantization, | 33 |
| abstract_inverted_index.stationarity, | 127 |
| abstract_inverted_index.component-wise | 34 |
| abstract_inverted_index.nonlinearities | 30 |
| abstract_inverted_index.nonlinearities, | 164 |
| abstract_inverted_index.high-probability | 2 |
| abstract_inverted_index.state-of-the-art | 176 |
| abstract_inverted_index.state-of-the-art, | 140 |
| abstract_inverted_index.$\mathcal{O}(t^{-ζ})$, | 97 |
| abstract_inverted_index.$\widetilde{\mathcal{O}}(t^{-1/4})$, | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |