Nonparametric simulation extrapolation for measurement‐error models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1002/cjs.11777
The presence of measurement error is a widespread issue, which, when ignored, can render the results of an analysis unreliable. Numerous corrections for the effects of measurement error have been proposed and studied, often under the assumption of a normally distributed, additive measurement‐error model. In many situations, observed data are nonsymmetric, heavy‐tailed, or otherwise highly non‐normal. In these settings, correction techniques relying on the assumption of normality are undesirable. We propose an extension of simulation extrapolation that is nonparametric in the sense that no specific distributional assumptions are required on the error terms. The technique can be implemented when either validation data or replicate measurements are available, and is designed to be immediately accessible to those familiar with simulation extrapolation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/cjs.11777
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cjs.11777
- OA Status
- bronze
- Cited By
- 5
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382202359
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382202359Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/cjs.11777Digital Object Identifier
- Title
-
Nonparametric simulation extrapolation for measurement‐error modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-27Full publication date if available
- Authors
-
Dylan Spicker, Michael P. Wallace, Grace Y. YiList of authors in order
- Landing page
-
https://doi.org/10.1002/cjs.11777Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cjs.11777Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cjs.11777Direct OA link when available
- Concepts
-
Extrapolation, Nonparametric statistics, Replicate, Observational error, Normality, Computer science, Errors-in-variables models, Extension (predicate logic), Algorithm, Econometrics, Statistics, Mathematics, Machine learning, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382202359 |
|---|---|
| doi | https://doi.org/10.1002/cjs.11777 |
| ids.doi | https://doi.org/10.1002/cjs.11777 |
| ids.openalex | https://openalex.org/W4382202359 |
| fwci | 3.19279601 |
| type | article |
| title | Nonparametric simulation extrapolation for measurement‐error models |
| biblio.issue | 2 |
| biblio.volume | 52 |
| biblio.last_page | 499 |
| biblio.first_page | 477 |
| topics[0].id | https://openalex.org/T10243 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Bayesian Inference |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T11798 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9728000164031982 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Optimal Experimental Design Methods |
| funders[0].id | https://openalex.org/F4320320994 |
| funders[0].ror | https://ror.org/0517h6h17 |
| funders[0].display_name | Canada Research Chairs |
| funders[1].id | https://openalex.org/F4320334593 |
| funders[1].ror | https://ror.org/01h531d29 |
| funders[1].display_name | Natural Sciences and Engineering Research Council of Canada |
| is_xpac | False |
| apc_list.value | 2830 |
| apc_list.currency | USD |
| apc_list.value_usd | 2830 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C132459708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9294463396072388 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q744069 |
| concepts[0].display_name | Extrapolation |
| concepts[1].id | https://openalex.org/C102366305 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7438323497772217 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1097688 |
| concepts[1].display_name | Nonparametric statistics |
| concepts[2].id | https://openalex.org/C2781162219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7189483046531677 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q26250693 |
| concepts[2].display_name | Replicate |
| concepts[3].id | https://openalex.org/C19619285 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6672037839889526 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q196372 |
| concepts[3].display_name | Observational error |
| concepts[4].id | https://openalex.org/C2776157432 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6217957139015198 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1375683 |
| concepts[4].display_name | Normality |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.6117247343063354 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C179024874 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47053512930870056 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5395728 |
| concepts[6].display_name | Errors-in-variables models |
| concepts[7].id | https://openalex.org/C2778029271 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4417480230331421 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5421931 |
| concepts[7].display_name | Extension (predicate logic) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.43662673234939575 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C149782125 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38913023471832275 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[9].display_name | Econometrics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.38053345680236816 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.28871145844459534 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.18279346823692322 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/extrapolation |
| keywords[0].score | 0.9294463396072388 |
| keywords[0].display_name | Extrapolation |
| keywords[1].id | https://openalex.org/keywords/nonparametric-statistics |
| keywords[1].score | 0.7438323497772217 |
| keywords[1].display_name | Nonparametric statistics |
| keywords[2].id | https://openalex.org/keywords/replicate |
| keywords[2].score | 0.7189483046531677 |
| keywords[2].display_name | Replicate |
| keywords[3].id | https://openalex.org/keywords/observational-error |
| keywords[3].score | 0.6672037839889526 |
| keywords[3].display_name | Observational error |
| keywords[4].id | https://openalex.org/keywords/normality |
| keywords[4].score | 0.6217957139015198 |
| keywords[4].display_name | Normality |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.6117247343063354 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/errors-in-variables-models |
| keywords[6].score | 0.47053512930870056 |
| keywords[6].display_name | Errors-in-variables models |
| keywords[7].id | https://openalex.org/keywords/extension |
| keywords[7].score | 0.4417480230331421 |
| keywords[7].display_name | Extension (predicate logic) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.43662673234939575 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/econometrics |
| keywords[9].score | 0.38913023471832275 |
| keywords[9].display_name | Econometrics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.38053345680236816 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.28871145844459534 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.18279346823692322 |
| keywords[12].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1002/cjs.11777 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210224318 |
| locations[0].source.issn | 0319-5724, 1708-945X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0319-5724 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Canadian Journal of Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cjs.11777 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Canadian Journal of Statistics |
| locations[0].landing_page_url | https://doi.org/10.1002/cjs.11777 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5077505931 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3200-5212 |
| authorships[0].author.display_name | Dylan Spicker |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5023651 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I5023651 |
| authorships[0].institutions[0].ror | https://ror.org/01pxwe438 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5023651 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | McGill University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dylan Spicker |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada |
| authorships[1].author.id | https://openalex.org/A5103116788 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5763-5723 |
| authorships[1].author.display_name | Michael P. Wallace |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I151746483 |
| authorships[1].institutions[0].ror | https://ror.org/01aff2v68 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I151746483 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Waterloo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael P. Wallace |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada |
| authorships[2].author.id | https://openalex.org/A5027599015 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0081-873X |
| authorships[2].author.display_name | Grace Y. Yi |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I125749732 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Statistical and Actuarial Sciences, Department of Computer Science, University of Western Ontario, London, Ontario, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I125749732 |
| authorships[2].institutions[0].ror | https://ror.org/02grkyz14 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I125749732 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | Western University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Grace Y. Yi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Statistical and Actuarial Sciences, Department of Computer Science, University of Western Ontario, London, Ontario, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cjs.11777 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Nonparametric simulation extrapolation for measurement‐error models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10243 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Bayesian Inference |
| related_works | https://openalex.org/W2068341603, https://openalex.org/W4384519788, https://openalex.org/W4243183972, https://openalex.org/W2961206477, https://openalex.org/W4250366701, https://openalex.org/W4244757547, https://openalex.org/W4251324013, https://openalex.org/W3122201768, https://openalex.org/W1921706276, https://openalex.org/W2619150394 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/cjs.11777 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210224318 |
| best_oa_location.source.issn | 0319-5724, 1708-945X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0319-5724 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Canadian Journal of Statistics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cjs.11777 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Canadian Journal of Statistics |
| best_oa_location.landing_page_url | https://doi.org/10.1002/cjs.11777 |
| primary_location.id | doi:10.1002/cjs.11777 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210224318 |
| primary_location.source.issn | 0319-5724, 1708-945X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0319-5724 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Canadian Journal of Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cjs.11777 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Canadian Journal of Statistics |
| primary_location.landing_page_url | https://doi.org/10.1002/cjs.11777 |
| publication_date | 2023-06-27 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2096753780, https://openalex.org/W2560595667, https://openalex.org/W2077974049, https://openalex.org/W4302338619, https://openalex.org/W2008102307, https://openalex.org/W2061250208, https://openalex.org/W2329394604, https://openalex.org/W2124181495, https://openalex.org/W1528967019, https://openalex.org/W2131198096, https://openalex.org/W1987315804, https://openalex.org/W2054868636, https://openalex.org/W2013100770, https://openalex.org/W2058257254, https://openalex.org/W2090716617, https://openalex.org/W2571242704, https://openalex.org/W2027514721, https://openalex.org/W2767087553, https://openalex.org/W2008223895, https://openalex.org/W2036321128, https://openalex.org/W2013558363, https://openalex.org/W2011287710, https://openalex.org/W2591838865, https://openalex.org/W2741572302, https://openalex.org/W1940841315, https://openalex.org/W3105351724 |
| referenced_works_count | 26 |
| abstract_inverted_index.a | 7, 39 |
| abstract_inverted_index.In | 45, 57 |
| abstract_inverted_index.We | 70 |
| abstract_inverted_index.an | 18, 72 |
| abstract_inverted_index.be | 97, 112 |
| abstract_inverted_index.in | 80 |
| abstract_inverted_index.is | 6, 78, 109 |
| abstract_inverted_index.no | 84 |
| abstract_inverted_index.of | 3, 17, 26, 38, 66, 74 |
| abstract_inverted_index.on | 63, 90 |
| abstract_inverted_index.or | 53, 103 |
| abstract_inverted_index.to | 111, 115 |
| abstract_inverted_index.The | 1, 94 |
| abstract_inverted_index.and | 32, 108 |
| abstract_inverted_index.are | 50, 68, 88, 106 |
| abstract_inverted_index.can | 13, 96 |
| abstract_inverted_index.for | 23 |
| abstract_inverted_index.the | 15, 24, 36, 64, 81, 91 |
| abstract_inverted_index.been | 30 |
| abstract_inverted_index.data | 49, 102 |
| abstract_inverted_index.have | 29 |
| abstract_inverted_index.many | 46 |
| abstract_inverted_index.that | 77, 83 |
| abstract_inverted_index.when | 11, 99 |
| abstract_inverted_index.with | 118 |
| abstract_inverted_index.error | 5, 28, 92 |
| abstract_inverted_index.often | 34 |
| abstract_inverted_index.sense | 82 |
| abstract_inverted_index.these | 58 |
| abstract_inverted_index.those | 116 |
| abstract_inverted_index.under | 35 |
| abstract_inverted_index.either | 100 |
| abstract_inverted_index.highly | 55 |
| abstract_inverted_index.issue, | 9 |
| abstract_inverted_index.model. | 44 |
| abstract_inverted_index.render | 14 |
| abstract_inverted_index.terms. | 93 |
| abstract_inverted_index.which, | 10 |
| abstract_inverted_index.effects | 25 |
| abstract_inverted_index.propose | 71 |
| abstract_inverted_index.relying | 62 |
| abstract_inverted_index.results | 16 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Numerous | 21 |
| abstract_inverted_index.additive | 42 |
| abstract_inverted_index.analysis | 19 |
| abstract_inverted_index.designed | 110 |
| abstract_inverted_index.familiar | 117 |
| abstract_inverted_index.ignored, | 12 |
| abstract_inverted_index.normally | 40 |
| abstract_inverted_index.observed | 48 |
| abstract_inverted_index.presence | 2 |
| abstract_inverted_index.proposed | 31 |
| abstract_inverted_index.required | 89 |
| abstract_inverted_index.specific | 85 |
| abstract_inverted_index.studied, | 33 |
| abstract_inverted_index.extension | 73 |
| abstract_inverted_index.normality | 67 |
| abstract_inverted_index.otherwise | 54 |
| abstract_inverted_index.replicate | 104 |
| abstract_inverted_index.settings, | 59 |
| abstract_inverted_index.technique | 95 |
| abstract_inverted_index.accessible | 114 |
| abstract_inverted_index.assumption | 37, 65 |
| abstract_inverted_index.available, | 107 |
| abstract_inverted_index.correction | 60 |
| abstract_inverted_index.simulation | 75, 119 |
| abstract_inverted_index.techniques | 61 |
| abstract_inverted_index.validation | 101 |
| abstract_inverted_index.widespread | 8 |
| abstract_inverted_index.assumptions | 87 |
| abstract_inverted_index.corrections | 22 |
| abstract_inverted_index.immediately | 113 |
| abstract_inverted_index.implemented | 98 |
| abstract_inverted_index.measurement | 4, 27 |
| abstract_inverted_index.situations, | 47 |
| abstract_inverted_index.unreliable. | 20 |
| abstract_inverted_index.distributed, | 41 |
| abstract_inverted_index.measurements | 105 |
| abstract_inverted_index.undesirable. | 69 |
| abstract_inverted_index.extrapolation | 76 |
| abstract_inverted_index.nonparametric | 79 |
| abstract_inverted_index.nonsymmetric, | 51 |
| abstract_inverted_index.non‐normal. | 56 |
| abstract_inverted_index.distributional | 86 |
| abstract_inverted_index.extrapolation. | 120 |
| abstract_inverted_index.heavy‐tailed, | 52 |
| abstract_inverted_index.measurement‐error | 43 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5077505931 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I5023651 |
| citation_normalized_percentile.value | 0.8720554 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |