Normal-Power-Logistic Distribution: Properties and Application in Generalized Linear Model Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/s41096-022-00143-4
The applications of Normal distribution in literature are verse, the new modified univariate normal power distribution is a new distribution which is adequate for modelling bimodal data. There are many data that would have been modelled by normal distribution, but because of their bimodality, they are not, since normal distribution is unimodal. In this paper, a new extension of the normal linear model called the normal-Power generalized linear model, derived from the T-Power Logistic framework is presented. The statistical properties of the distribution and the proposed model were derived such as quantiles, median, mode, robust skewness, robust kurtosis and moment. The maximum likelihood estimation method was considered to obtain the unknown model parameters. Three real data sets were analyzed to demonstrate the flexibility and usefulness of the proposed model. The new model would be very useful as alternative in cases where skewed or bimodal response variables, which are not well fitted with normal linear model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s41096-022-00143-4
- https://link.springer.com/content/pdf/10.1007/s41096-022-00143-4.pdf
- OA Status
- hybrid
- Cited By
- 8
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309777851
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309777851Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s41096-022-00143-4Digital Object Identifier
- Title
-
Normal-Power-Logistic Distribution: Properties and Application in Generalized Linear ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-19Full publication date if available
- Authors
-
Matthew Iwada Ekum, M. O. Adamu, Eno Emmanuella AkarawakList of authors in order
- Landing page
-
https://doi.org/10.1007/s41096-022-00143-4Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s41096-022-00143-4.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s41096-022-00143-4.pdfDirect OA link when available
- Concepts
-
Distribution (mathematics), Logistic distribution, Mathematics, Generalized normal distribution, Generalized linear model, Logistic regression, Power (physics), Statistics, Applied mathematics, Normal distribution, Mathematical analysis, Physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309777851 |
|---|---|
| doi | https://doi.org/10.1007/s41096-022-00143-4 |
| ids.doi | https://doi.org/10.1007/s41096-022-00143-4 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40478115 |
| ids.openalex | https://openalex.org/W4309777851 |
| fwci | 3.33952664 |
| type | article |
| title | Normal-Power-Logistic Distribution: Properties and Application in Generalized Linear Model |
| biblio.issue | 1 |
| biblio.volume | 24 |
| biblio.last_page | 54 |
| biblio.first_page | 23 |
| topics[0].id | https://openalex.org/T10968 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Distribution Estimation and Applications |
| topics[1].id | https://openalex.org/T10780 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.98089998960495 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Reliability and Maintenance Optimization |
| topics[2].id | https://openalex.org/T10928 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.972000002861023 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Probabilistic and Robust Engineering Design |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| concepts[0].id | https://openalex.org/C110121322 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5261858701705933 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q865811 |
| concepts[0].display_name | Distribution (mathematics) |
| concepts[1].id | https://openalex.org/C94465730 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5213483572006226 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q589603 |
| concepts[1].display_name | Logistic distribution |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.506117045879364 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C171383496 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4834204912185669 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2497477 |
| concepts[3].display_name | Generalized normal distribution |
| concepts[4].id | https://openalex.org/C41587187 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4739301800727844 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1501882 |
| concepts[4].display_name | Generalized linear model |
| concepts[5].id | https://openalex.org/C151956035 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4523419737815857 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1132755 |
| concepts[5].display_name | Logistic regression |
| concepts[6].id | https://openalex.org/C163258240 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4111281931400299 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[6].display_name | Power (physics) |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36319130659103394 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C28826006 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3580051362514496 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[8].display_name | Applied mathematics |
| concepts[9].id | https://openalex.org/C102094743 |
| concepts[9].level | 2 |
| concepts[9].score | 0.30972933769226074 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q133871 |
| concepts[9].display_name | Normal distribution |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.21181711554527283 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.11940431594848633 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C97355855 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06722521781921387 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[12].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/distribution |
| keywords[0].score | 0.5261858701705933 |
| keywords[0].display_name | Distribution (mathematics) |
| keywords[1].id | https://openalex.org/keywords/logistic-distribution |
| keywords[1].score | 0.5213483572006226 |
| keywords[1].display_name | Logistic distribution |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.506117045879364 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/generalized-normal-distribution |
| keywords[3].score | 0.4834204912185669 |
| keywords[3].display_name | Generalized normal distribution |
| keywords[4].id | https://openalex.org/keywords/generalized-linear-model |
| keywords[4].score | 0.4739301800727844 |
| keywords[4].display_name | Generalized linear model |
| keywords[5].id | https://openalex.org/keywords/logistic-regression |
| keywords[5].score | 0.4523419737815857 |
| keywords[5].display_name | Logistic regression |
| keywords[6].id | https://openalex.org/keywords/power |
| keywords[6].score | 0.4111281931400299 |
| keywords[6].display_name | Power (physics) |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.36319130659103394 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/applied-mathematics |
| keywords[8].score | 0.3580051362514496 |
| keywords[8].display_name | Applied mathematics |
| keywords[9].id | https://openalex.org/keywords/normal-distribution |
| keywords[9].score | 0.30972933769226074 |
| keywords[9].display_name | Normal distribution |
| keywords[10].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[10].score | 0.21181711554527283 |
| keywords[10].display_name | Mathematical analysis |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.11940431594848633 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/thermodynamics |
| keywords[12].score | 0.06722521781921387 |
| keywords[12].display_name | Thermodynamics |
| language | en |
| locations[0].id | doi:10.1007/s41096-022-00143-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210230692 |
| locations[0].source.issn | 2364-9569 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2364-9569 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the Indian Society for Probability and Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s41096-022-00143-4.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the Indian Society for Probability and Statistics |
| locations[0].landing_page_url | https://doi.org/10.1007/s41096-022-00143-4 |
| locations[1].id | pmid:40478115 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of the Indian Society for Probability and Statistics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40478115 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9676888 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | acceptedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | True |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Indian Soc Probab Stat |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9676888 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5040829298 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6876-6649 |
| authorships[0].author.display_name | Matthew Iwada Ekum |
| authorships[0].countries | NG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I126541806 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematical Sciences, College of Basic Sciences, Lagos State University of Science and Technology, Ikorodu, Lagos, Nigeria |
| authorships[0].institutions[0].id | https://openalex.org/I126541806 |
| authorships[0].institutions[0].ror | https://ror.org/01za8fg18 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I126541806 |
| authorships[0].institutions[0].country_code | NG |
| authorships[0].institutions[0].display_name | Lagos State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matthew I. Ekum |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Mathematical Sciences, College of Basic Sciences, Lagos State University of Science and Technology, Ikorodu, Lagos, Nigeria |
| authorships[1].author.id | https://openalex.org/A5113708706 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | M. O. Adamu |
| authorships[1].countries | NG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I197610006 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria |
| authorships[1].institutions[0].id | https://openalex.org/I197610006 |
| authorships[1].institutions[0].ror | https://ror.org/05rk03822 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I197610006 |
| authorships[1].institutions[0].country_code | NG |
| authorships[1].institutions[0].display_name | University of Lagos |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muminu O. Adamu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria |
| authorships[2].author.id | https://openalex.org/A5035211627 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0025-9963 |
| authorships[2].author.display_name | Eno Emmanuella Akarawak |
| authorships[2].countries | NG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I197610006 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Statistics, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria |
| authorships[2].institutions[0].id | https://openalex.org/I197610006 |
| authorships[2].institutions[0].ror | https://ror.org/05rk03822 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I197610006 |
| authorships[2].institutions[0].country_code | NG |
| authorships[2].institutions[0].display_name | University of Lagos |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Eno E. E. Akarawak |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Statistics, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s41096-022-00143-4.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Normal-Power-Logistic Distribution: Properties and Application in Generalized Linear Model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10968 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Distribution Estimation and Applications |
| related_works | https://openalex.org/W2592991060, https://openalex.org/W2011975901, https://openalex.org/W88349154, https://openalex.org/W2142211552, https://openalex.org/W4248368593, https://openalex.org/W2020712165, https://openalex.org/W289214573, https://openalex.org/W4366549326, https://openalex.org/W2073229519, https://openalex.org/W4309777851 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1007/s41096-022-00143-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210230692 |
| best_oa_location.source.issn | 2364-9569 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2364-9569 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of the Indian Society for Probability and Statistics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s41096-022-00143-4.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of the Indian Society for Probability and Statistics |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s41096-022-00143-4 |
| primary_location.id | doi:10.1007/s41096-022-00143-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210230692 |
| primary_location.source.issn | 2364-9569 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2364-9569 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the Indian Society for Probability and Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s41096-022-00143-4.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the Indian Society for Probability and Statistics |
| primary_location.landing_page_url | https://doi.org/10.1007/s41096-022-00143-4 |
| publication_date | 2022-11-19 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2884465017, https://openalex.org/W1966827292, https://openalex.org/W2067154937, https://openalex.org/W2498872126, https://openalex.org/W3038652485, https://openalex.org/W193160530, https://openalex.org/W2157230072, https://openalex.org/W2157462883, https://openalex.org/W3176745581, https://openalex.org/W3017844913, https://openalex.org/W2143902124, https://openalex.org/W2911773830, https://openalex.org/W2036209393, https://openalex.org/W2963531804, https://openalex.org/W2092287506, https://openalex.org/W4245667244, https://openalex.org/W3129097143, https://openalex.org/W2606915377, https://openalex.org/W3028833561, https://openalex.org/W2479844983, https://openalex.org/W1822873477, https://openalex.org/W2029645921, https://openalex.org/W2900191098, https://openalex.org/W2920051115 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 17, 55 |
| abstract_inverted_index.In | 52 |
| abstract_inverted_index.as | 94, 140 |
| abstract_inverted_index.be | 137 |
| abstract_inverted_index.by | 36 |
| abstract_inverted_index.in | 5, 142 |
| abstract_inverted_index.is | 16, 21, 50, 79 |
| abstract_inverted_index.of | 2, 41, 58, 84, 129 |
| abstract_inverted_index.or | 146 |
| abstract_inverted_index.to | 111, 123 |
| abstract_inverted_index.The | 0, 81, 104, 133 |
| abstract_inverted_index.and | 87, 102, 127 |
| abstract_inverted_index.are | 7, 28, 45, 151 |
| abstract_inverted_index.but | 39 |
| abstract_inverted_index.for | 23 |
| abstract_inverted_index.new | 10, 18, 56, 134 |
| abstract_inverted_index.not | 152 |
| abstract_inverted_index.the | 9, 59, 64, 71, 85, 88, 113, 125, 130 |
| abstract_inverted_index.was | 109 |
| abstract_inverted_index.been | 34 |
| abstract_inverted_index.data | 30, 119 |
| abstract_inverted_index.from | 70 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.many | 29 |
| abstract_inverted_index.not, | 46 |
| abstract_inverted_index.real | 118 |
| abstract_inverted_index.sets | 120 |
| abstract_inverted_index.such | 93 |
| abstract_inverted_index.that | 31 |
| abstract_inverted_index.they | 44 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.very | 138 |
| abstract_inverted_index.well | 153 |
| abstract_inverted_index.were | 91, 121 |
| abstract_inverted_index.with | 155 |
| abstract_inverted_index.There | 27 |
| abstract_inverted_index.Three | 117 |
| abstract_inverted_index.cases | 143 |
| abstract_inverted_index.data. | 26 |
| abstract_inverted_index.mode, | 97 |
| abstract_inverted_index.model | 62, 90, 115, 135 |
| abstract_inverted_index.power | 14 |
| abstract_inverted_index.since | 47 |
| abstract_inverted_index.their | 42 |
| abstract_inverted_index.where | 144 |
| abstract_inverted_index.which | 20, 150 |
| abstract_inverted_index.would | 32, 136 |
| abstract_inverted_index.Normal | 3 |
| abstract_inverted_index.called | 63 |
| abstract_inverted_index.fitted | 154 |
| abstract_inverted_index.linear | 61, 67, 157 |
| abstract_inverted_index.method | 108 |
| abstract_inverted_index.model, | 68 |
| abstract_inverted_index.model. | 132, 158 |
| abstract_inverted_index.normal | 13, 37, 48, 60, 156 |
| abstract_inverted_index.obtain | 112 |
| abstract_inverted_index.paper, | 54 |
| abstract_inverted_index.robust | 98, 100 |
| abstract_inverted_index.skewed | 145 |
| abstract_inverted_index.useful | 139 |
| abstract_inverted_index.verse, | 8 |
| abstract_inverted_index.T-Power | 72 |
| abstract_inverted_index.because | 40 |
| abstract_inverted_index.bimodal | 25, 147 |
| abstract_inverted_index.derived | 69, 92 |
| abstract_inverted_index.maximum | 105 |
| abstract_inverted_index.median, | 96 |
| abstract_inverted_index.moment. | 103 |
| abstract_inverted_index.unknown | 114 |
| abstract_inverted_index.Logistic | 75 |
| abstract_inverted_index.adequate | 22 |
| abstract_inverted_index.analyzed | 122 |
| abstract_inverted_index.kurtosis | 101 |
| abstract_inverted_index.modelled | 35 |
| abstract_inverted_index.modified | 11 |
| abstract_inverted_index.proposed | 89, 131 |
| abstract_inverted_index.response | 148 |
| abstract_inverted_index.<mml:math | 73, 76 |
| abstract_inverted_index.extension | 57 |
| abstract_inverted_index.framework | 78 |
| abstract_inverted_index.modelling | 24 |
| abstract_inverted_index.skewness, | 99 |
| abstract_inverted_index.unimodal. | 51 |
| abstract_inverted_index.considered | 110 |
| abstract_inverted_index.estimation | 107 |
| abstract_inverted_index.likelihood | 106 |
| abstract_inverted_index.literature | 6 |
| abstract_inverted_index.presented. | 80 |
| abstract_inverted_index.properties | 83 |
| abstract_inverted_index.quantiles, | 95 |
| abstract_inverted_index.univariate | 12 |
| abstract_inverted_index.usefulness | 128 |
| abstract_inverted_index.variables, | 149 |
| abstract_inverted_index.alternative | 141 |
| abstract_inverted_index.bimodality, | 43 |
| abstract_inverted_index.demonstrate | 124 |
| abstract_inverted_index.flexibility | 126 |
| abstract_inverted_index.generalized | 66 |
| abstract_inverted_index.parameters. | 116 |
| abstract_inverted_index.statistical | 82 |
| abstract_inverted_index.applications | 1 |
| abstract_inverted_index.distribution | 4, 15, 19, 49, 86 |
| abstract_inverted_index.normal-Power | 65 |
| abstract_inverted_index.distribution, | 38 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>{</mml:mo></mml:math> | 74 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>}</mml:mo></mml:math> | 77 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5040829298 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I126541806 |
| citation_normalized_percentile.value | 0.88388613 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |