Normalizing Flows are Capable Generative Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.06329
Normalizing Flows (NFs) are likelihood-based models for continuous inputs. They have demonstrated promising results on both density estimation and generative modeling tasks, but have received relatively little attention in recent years. In this work, we demonstrate that NFs are more powerful than previously believed. We present TarFlow: a simple and scalable architecture that enables highly performant NF models. TarFlow can be thought of as a Transformer-based variant of Masked Autoregressive Flows (MAFs): it consists of a stack of autoregressive Transformer blocks on image patches, alternating the autoregression direction between layers. TarFlow is straightforward to train end-to-end, and capable of directly modeling and generating pixels. We also propose three key techniques to improve sample quality: Gaussian noise augmentation during training, a post training denoising procedure, and an effective guidance method for both class-conditional and unconditional settings. Putting these together, TarFlow sets new state-of-the-art results on likelihood estimation for images, beating the previous best methods by a large margin, and generates samples with quality and diversity comparable to diffusion models, for the first time with a stand-alone NF model. We make our code available at https://github.com/apple/ml-tarflow.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.06329
- https://arxiv.org/pdf/2412.06329
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405254033
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405254033Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.06329Digital Object Identifier
- Title
-
Normalizing Flows are Capable Generative ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-09Full publication date if available
- Authors
-
Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu, Huangjie Zheng, Tianrong Chen, Miguel Ángel Bautista, Navdeep Jaitly, Josh SusskindList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.06329Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.06329Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.06329Direct OA link when available
- Concepts
-
Generative grammar, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405254033 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.06329 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.06329 |
| ids.openalex | https://openalex.org/W4405254033 |
| fwci | |
| type | preprint |
| title | Normalizing Flows are Capable Generative Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11801 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8867999911308289 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Reservoir Engineering and Simulation Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6469975113868713 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.38083115220069885 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.2644583582878113 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.6469975113868713 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.38083115220069885 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.2644583582878113 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.06329 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.06329 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.06329 |
| locations[1].id | doi:10.48550/arxiv.2412.06329 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.06329 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5031329242 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shuangfei Zhai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhai, Shuangfei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5008617245 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0704-2484 |
| authorships[1].author.display_name | Ruixiang Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Ruixiang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5110716768 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Preetum Nakkiran |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nakkiran, Preetum |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5088218200 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | David Berthelot |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Berthelot, David |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5112542984 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jiatao Gu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gu, Jiatao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5077499817 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0508-5034 |
| authorships[5].author.display_name | Huangjie Zheng |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zheng, Huangjie |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5087793625 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1701-2991 |
| authorships[6].author.display_name | Tianrong Chen |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chen, Tianrong |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5011106959 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Miguel Ángel Bautista |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Bautista, Miguel Angel |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5112445699 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Navdeep Jaitly |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Jaitly, Navdeep |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5043808400 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Josh Susskind |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Susskind, Josh |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.06329 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Normalizing Flows are Capable Generative Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11801 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8867999911308289 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Reservoir Engineering and Simulation Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2380075625, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.06329 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.06329 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.06329 |
| primary_location.id | pmh:oai:arXiv.org:2412.06329 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.06329 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.06329 |
| publication_date | 2024-12-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 47, 64, 75, 119, 154, 173 |
| abstract_inverted_index.In | 31 |
| abstract_inverted_index.NF | 56, 175 |
| abstract_inverted_index.We | 44, 104, 177 |
| abstract_inverted_index.an | 125 |
| abstract_inverted_index.as | 63 |
| abstract_inverted_index.at | 182 |
| abstract_inverted_index.be | 60 |
| abstract_inverted_index.by | 153 |
| abstract_inverted_index.in | 28 |
| abstract_inverted_index.is | 91 |
| abstract_inverted_index.it | 72 |
| abstract_inverted_index.of | 62, 67, 74, 77, 98 |
| abstract_inverted_index.on | 14, 81, 143 |
| abstract_inverted_index.to | 93, 110, 165 |
| abstract_inverted_index.we | 34 |
| abstract_inverted_index.NFs | 37 |
| abstract_inverted_index.and | 18, 49, 96, 101, 124, 132, 157, 162 |
| abstract_inverted_index.are | 3, 38 |
| abstract_inverted_index.but | 22 |
| abstract_inverted_index.can | 59 |
| abstract_inverted_index.for | 6, 129, 146, 168 |
| abstract_inverted_index.key | 108 |
| abstract_inverted_index.new | 140 |
| abstract_inverted_index.our | 179 |
| abstract_inverted_index.the | 85, 149, 169 |
| abstract_inverted_index.They | 9 |
| abstract_inverted_index.also | 105 |
| abstract_inverted_index.best | 151 |
| abstract_inverted_index.both | 15, 130 |
| abstract_inverted_index.code | 180 |
| abstract_inverted_index.have | 10, 23 |
| abstract_inverted_index.make | 178 |
| abstract_inverted_index.more | 39 |
| abstract_inverted_index.post | 120 |
| abstract_inverted_index.sets | 139 |
| abstract_inverted_index.than | 41 |
| abstract_inverted_index.that | 36, 52 |
| abstract_inverted_index.this | 32 |
| abstract_inverted_index.time | 171 |
| abstract_inverted_index.with | 160, 172 |
| abstract_inverted_index.(NFs) | 2 |
| abstract_inverted_index.Flows | 1, 70 |
| abstract_inverted_index.first | 170 |
| abstract_inverted_index.image | 82 |
| abstract_inverted_index.large | 155 |
| abstract_inverted_index.noise | 115 |
| abstract_inverted_index.stack | 76 |
| abstract_inverted_index.these | 136 |
| abstract_inverted_index.three | 107 |
| abstract_inverted_index.train | 94 |
| abstract_inverted_index.work, | 33 |
| abstract_inverted_index.Masked | 68 |
| abstract_inverted_index.blocks | 80 |
| abstract_inverted_index.during | 117 |
| abstract_inverted_index.highly | 54 |
| abstract_inverted_index.little | 26 |
| abstract_inverted_index.method | 128 |
| abstract_inverted_index.model. | 176 |
| abstract_inverted_index.models | 5 |
| abstract_inverted_index.recent | 29 |
| abstract_inverted_index.sample | 112 |
| abstract_inverted_index.simple | 48 |
| abstract_inverted_index.tasks, | 21 |
| abstract_inverted_index.years. | 30 |
| abstract_inverted_index.(MAFs): | 71 |
| abstract_inverted_index.Putting | 135 |
| abstract_inverted_index.TarFlow | 58, 90, 138 |
| abstract_inverted_index.beating | 148 |
| abstract_inverted_index.between | 88 |
| abstract_inverted_index.capable | 97 |
| abstract_inverted_index.density | 16 |
| abstract_inverted_index.enables | 53 |
| abstract_inverted_index.images, | 147 |
| abstract_inverted_index.improve | 111 |
| abstract_inverted_index.inputs. | 8 |
| abstract_inverted_index.layers. | 89 |
| abstract_inverted_index.margin, | 156 |
| abstract_inverted_index.methods | 152 |
| abstract_inverted_index.models, | 167 |
| abstract_inverted_index.models. | 57 |
| abstract_inverted_index.pixels. | 103 |
| abstract_inverted_index.present | 45 |
| abstract_inverted_index.propose | 106 |
| abstract_inverted_index.quality | 161 |
| abstract_inverted_index.results | 13, 142 |
| abstract_inverted_index.samples | 159 |
| abstract_inverted_index.thought | 61 |
| abstract_inverted_index.variant | 66 |
| abstract_inverted_index.Gaussian | 114 |
| abstract_inverted_index.TarFlow: | 46 |
| abstract_inverted_index.consists | 73 |
| abstract_inverted_index.directly | 99 |
| abstract_inverted_index.guidance | 127 |
| abstract_inverted_index.modeling | 20, 100 |
| abstract_inverted_index.patches, | 83 |
| abstract_inverted_index.powerful | 40 |
| abstract_inverted_index.previous | 150 |
| abstract_inverted_index.quality: | 113 |
| abstract_inverted_index.received | 24 |
| abstract_inverted_index.scalable | 50 |
| abstract_inverted_index.training | 121 |
| abstract_inverted_index.attention | 27 |
| abstract_inverted_index.available | 181 |
| abstract_inverted_index.believed. | 43 |
| abstract_inverted_index.denoising | 122 |
| abstract_inverted_index.diffusion | 166 |
| abstract_inverted_index.direction | 87 |
| abstract_inverted_index.diversity | 163 |
| abstract_inverted_index.effective | 126 |
| abstract_inverted_index.generates | 158 |
| abstract_inverted_index.promising | 12 |
| abstract_inverted_index.settings. | 134 |
| abstract_inverted_index.together, | 137 |
| abstract_inverted_index.training, | 118 |
| abstract_inverted_index.comparable | 164 |
| abstract_inverted_index.continuous | 7 |
| abstract_inverted_index.estimation | 17, 145 |
| abstract_inverted_index.generating | 102 |
| abstract_inverted_index.generative | 19 |
| abstract_inverted_index.likelihood | 144 |
| abstract_inverted_index.performant | 55 |
| abstract_inverted_index.previously | 42 |
| abstract_inverted_index.procedure, | 123 |
| abstract_inverted_index.relatively | 25 |
| abstract_inverted_index.techniques | 109 |
| abstract_inverted_index.Normalizing | 0 |
| abstract_inverted_index.Transformer | 79 |
| abstract_inverted_index.alternating | 84 |
| abstract_inverted_index.demonstrate | 35 |
| abstract_inverted_index.end-to-end, | 95 |
| abstract_inverted_index.stand-alone | 174 |
| abstract_inverted_index.architecture | 51 |
| abstract_inverted_index.augmentation | 116 |
| abstract_inverted_index.demonstrated | 11 |
| abstract_inverted_index.unconditional | 133 |
| abstract_inverted_index.Autoregressive | 69 |
| abstract_inverted_index.autoregression | 86 |
| abstract_inverted_index.autoregressive | 78 |
| abstract_inverted_index.straightforward | 92 |
| abstract_inverted_index.likelihood-based | 4 |
| abstract_inverted_index.state-of-the-art | 141 |
| abstract_inverted_index.Transformer-based | 65 |
| abstract_inverted_index.class-conditional | 131 |
| abstract_inverted_index.https://github.com/apple/ml-tarflow. | 183 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |