Normalizing flows for conditional independence testing Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s10115-023-01964-w
Detecting conditional independencies plays a key role in several statistical and machine learning tasks, especially in causal discovery algorithms, yet it remains a highly challenging problem due to dimensionality and complex relationships presented in data. In this study, we introduce LCIT (Latent representation-based Conditional Independence Test)—a novel method for conditional independence testing based on representation learning. Our main contribution involves a hypothesis testing framework in which to test for the independence between X and Y given Z , we first learn to infer the latent representations of target variables X and Y that contain no information about the conditioning variable Z . The latent variables are then investigated for any significant remaining dependencies, which can be performed using a conventional correlation test. Moreover, LCIT can also handle discrete and mixed-type data in general by converting discrete variables into the continuous domain via variational dequantization. The empirical evaluations show that LCIT outperforms several state-of-the-art baselines consistently under different evaluation metrics, and is able to adapt really well to both nonlinear, high-dimensional, and mixed data settings on a diverse collection of synthetic and real data sets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10115-023-01964-w
- https://link.springer.com/content/pdf/10.1007/s10115-023-01964-w.pdf
- OA Status
- hybrid
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386216194
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386216194Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10115-023-01964-wDigital Object Identifier
- Title
-
Normalizing flows for conditional independence testingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-28Full publication date if available
- Authors
-
Bao Duong, Thin NguyenList of authors in order
- Landing page
-
https://doi.org/10.1007/s10115-023-01964-wPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10115-023-01964-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10115-023-01964-w.pdfDirect OA link when available
- Concepts
-
Conditional independence, Latent variable, Independence (probability theory), Local independence, Representation (politics), Computer science, Machine learning, Curse of dimensionality, Artificial intelligence, Latent variable model, Mathematics, Data mining, Theoretical computer science, Statistics, Law, Political science, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386216194 |
|---|---|
| doi | https://doi.org/10.1007/s10115-023-01964-w |
| ids.doi | https://doi.org/10.1007/s10115-023-01964-w |
| ids.openalex | https://openalex.org/W4386216194 |
| fwci | 0.0 |
| type | article |
| title | Normalizing flows for conditional independence testing |
| biblio.issue | 1 |
| biblio.volume | 66 |
| biblio.last_page | 380 |
| biblio.first_page | 357 |
| topics[0].id | https://openalex.org/T11303 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Modeling and Causal Inference |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9919999837875366 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| funders[0].id | https://openalex.org/F4320320970 |
| funders[0].ror | https://ror.org/02czsnj07 |
| funders[0].display_name | Deakin University |
| is_xpac | False |
| apc_list.value | 2290 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2890 |
| apc_paid.value | 2290 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2890 |
| concepts[0].id | https://openalex.org/C79772020 |
| concepts[0].level | 2 |
| concepts[0].score | 0.825230598449707 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5159264 |
| concepts[0].display_name | Conditional independence |
| concepts[1].id | https://openalex.org/C51167844 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6996962428092957 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[1].display_name | Latent variable |
| concepts[2].id | https://openalex.org/C35651441 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6293226480484009 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q625303 |
| concepts[2].display_name | Independence (probability theory) |
| concepts[3].id | https://openalex.org/C156216132 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5465230941772461 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17099642 |
| concepts[3].display_name | Local independence |
| concepts[4].id | https://openalex.org/C2776359362 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5393521785736084 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[4].display_name | Representation (politics) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5162551403045654 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5019009113311768 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C111030470 |
| concepts[7].level | 2 |
| concepts[7].score | 0.492740660905838 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[7].display_name | Curse of dimensionality |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.47505638003349304 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C65965080 |
| concepts[9].level | 3 |
| concepts[9].score | 0.46634501218795776 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1806885 |
| concepts[9].display_name | Latent variable model |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.379790723323822 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34163957834243774 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C80444323 |
| concepts[12].level | 1 |
| concepts[12].score | 0.34152311086654663 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[12].display_name | Theoretical computer science |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.16412606835365295 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C199539241 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[14].display_name | Law |
| concepts[15].id | https://openalex.org/C17744445 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[15].display_name | Political science |
| concepts[16].id | https://openalex.org/C94625758 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[16].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/conditional-independence |
| keywords[0].score | 0.825230598449707 |
| keywords[0].display_name | Conditional independence |
| keywords[1].id | https://openalex.org/keywords/latent-variable |
| keywords[1].score | 0.6996962428092957 |
| keywords[1].display_name | Latent variable |
| keywords[2].id | https://openalex.org/keywords/independence |
| keywords[2].score | 0.6293226480484009 |
| keywords[2].display_name | Independence (probability theory) |
| keywords[3].id | https://openalex.org/keywords/local-independence |
| keywords[3].score | 0.5465230941772461 |
| keywords[3].display_name | Local independence |
| keywords[4].id | https://openalex.org/keywords/representation |
| keywords[4].score | 0.5393521785736084 |
| keywords[4].display_name | Representation (politics) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5162551403045654 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5019009113311768 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[7].score | 0.492740660905838 |
| keywords[7].display_name | Curse of dimensionality |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.47505638003349304 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/latent-variable-model |
| keywords[9].score | 0.46634501218795776 |
| keywords[9].display_name | Latent variable model |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.379790723323822 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.34163957834243774 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[12].score | 0.34152311086654663 |
| keywords[12].display_name | Theoretical computer science |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.16412606835365295 |
| keywords[13].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1007/s10115-023-01964-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S81770430 |
| locations[0].source.issn | 0219-1377, 0219-3116 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0219-1377 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Knowledge and Information Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10115-023-01964-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Knowledge and Information Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s10115-023-01964-w |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102811209 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9850-0270 |
| authorships[0].author.display_name | Bao Duong |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[0].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I149704539 |
| authorships[0].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Deakin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bao Duong |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, Australia |
| authorships[1].author.id | https://openalex.org/A5100705489 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3467-8963 |
| authorships[1].author.display_name | Thin Nguyen |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[1].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I149704539 |
| authorships[1].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Deakin University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Thin Nguyen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10115-023-01964-w.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Normalizing flows for conditional independence testing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11303 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Modeling and Causal Inference |
| related_works | https://openalex.org/W1535265092, https://openalex.org/W1471855, https://openalex.org/W2152343454, https://openalex.org/W3032390039, https://openalex.org/W2057436646, https://openalex.org/W1975578747, https://openalex.org/W2729953015, https://openalex.org/W1480446239, https://openalex.org/W4361229434, https://openalex.org/W2331205114 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10115-023-01964-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S81770430 |
| best_oa_location.source.issn | 0219-1377, 0219-3116 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0219-1377 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Knowledge and Information Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10115-023-01964-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Knowledge and Information Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10115-023-01964-w |
| primary_location.id | doi:10.1007/s10115-023-01964-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S81770430 |
| primary_location.source.issn | 0219-1377, 0219-3116 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0219-1377 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Knowledge and Information Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10115-023-01964-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Knowledge and Information Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s10115-023-01964-w |
| publication_date | 2023-08-28 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1975062332, https://openalex.org/W2906311680, https://openalex.org/W3135588948, https://openalex.org/W4389775671, https://openalex.org/W2073307618, https://openalex.org/W2033105784, https://openalex.org/W2119983807, https://openalex.org/W2963086649, https://openalex.org/W6601158483, https://openalex.org/W2964132737, https://openalex.org/W2964340499, https://openalex.org/W1865262242, https://openalex.org/W2604511230, https://openalex.org/W3177437916, https://openalex.org/W4283814770, https://openalex.org/W2070792261, https://openalex.org/W2087039607, https://openalex.org/W2905060314, https://openalex.org/W2157801062, https://openalex.org/W6633162894, https://openalex.org/W1869362176, https://openalex.org/W6600254619, https://openalex.org/W2949676527, https://openalex.org/W2023348596, https://openalex.org/W2161922735, https://openalex.org/W1500567887, https://openalex.org/W4302423442 |
| referenced_works_count | 27 |
| abstract_inverted_index., | 78 |
| abstract_inverted_index.. | 102 |
| abstract_inverted_index.X | 73, 90 |
| abstract_inverted_index.Y | 75, 92 |
| abstract_inverted_index.Z | 77, 101 |
| abstract_inverted_index.a | 5, 23, 61, 119, 176 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.be | 116 |
| abstract_inverted_index.by | 134 |
| abstract_inverted_index.in | 8, 16, 34, 65, 132 |
| abstract_inverted_index.is | 161 |
| abstract_inverted_index.it | 21 |
| abstract_inverted_index.no | 95 |
| abstract_inverted_index.of | 87, 179 |
| abstract_inverted_index.on | 54, 175 |
| abstract_inverted_index.to | 28, 67, 82, 163, 167 |
| abstract_inverted_index.we | 39, 79 |
| abstract_inverted_index.Our | 57 |
| abstract_inverted_index.The | 103, 145 |
| abstract_inverted_index.and | 11, 30, 74, 91, 129, 160, 171, 181 |
| abstract_inverted_index.any | 110 |
| abstract_inverted_index.are | 106 |
| abstract_inverted_index.can | 115, 125 |
| abstract_inverted_index.due | 27 |
| abstract_inverted_index.for | 49, 69, 109 |
| abstract_inverted_index.key | 6 |
| abstract_inverted_index.the | 70, 84, 98, 139 |
| abstract_inverted_index.via | 142 |
| abstract_inverted_index.yet | 20 |
| abstract_inverted_index.LCIT | 41, 124, 150 |
| abstract_inverted_index.able | 162 |
| abstract_inverted_index.also | 126 |
| abstract_inverted_index.both | 168 |
| abstract_inverted_index.data | 131, 173, 183 |
| abstract_inverted_index.into | 138 |
| abstract_inverted_index.main | 58 |
| abstract_inverted_index.real | 182 |
| abstract_inverted_index.role | 7 |
| abstract_inverted_index.show | 148 |
| abstract_inverted_index.test | 68 |
| abstract_inverted_index.that | 93, 149 |
| abstract_inverted_index.then | 107 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.well | 166 |
| abstract_inverted_index.about | 97 |
| abstract_inverted_index.adapt | 164 |
| abstract_inverted_index.based | 53 |
| abstract_inverted_index.data. | 35 |
| abstract_inverted_index.first | 80 |
| abstract_inverted_index.given | 76 |
| abstract_inverted_index.infer | 83 |
| abstract_inverted_index.learn | 81 |
| abstract_inverted_index.mixed | 172 |
| abstract_inverted_index.novel | 47 |
| abstract_inverted_index.plays | 4 |
| abstract_inverted_index.sets. | 184 |
| abstract_inverted_index.test. | 122 |
| abstract_inverted_index.under | 156 |
| abstract_inverted_index.using | 118 |
| abstract_inverted_index.which | 66, 114 |
| abstract_inverted_index.causal | 17 |
| abstract_inverted_index.domain | 141 |
| abstract_inverted_index.handle | 127 |
| abstract_inverted_index.highly | 24 |
| abstract_inverted_index.latent | 85, 104 |
| abstract_inverted_index.method | 48 |
| abstract_inverted_index.really | 165 |
| abstract_inverted_index.study, | 38 |
| abstract_inverted_index.target | 88 |
| abstract_inverted_index.tasks, | 14 |
| abstract_inverted_index.(Latent | 42 |
| abstract_inverted_index.between | 72 |
| abstract_inverted_index.complex | 31 |
| abstract_inverted_index.contain | 94 |
| abstract_inverted_index.diverse | 177 |
| abstract_inverted_index.general | 133 |
| abstract_inverted_index.machine | 12 |
| abstract_inverted_index.problem | 26 |
| abstract_inverted_index.remains | 22 |
| abstract_inverted_index.several | 9, 152 |
| abstract_inverted_index.testing | 52, 63 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.discrete | 128, 136 |
| abstract_inverted_index.involves | 60 |
| abstract_inverted_index.learning | 13 |
| abstract_inverted_index.metrics, | 159 |
| abstract_inverted_index.settings | 174 |
| abstract_inverted_index.variable | 100 |
| abstract_inverted_index.Detecting | 1 |
| abstract_inverted_index.Moreover, | 123 |
| abstract_inverted_index.Test)—a | 46 |
| abstract_inverted_index.baselines | 154 |
| abstract_inverted_index.different | 157 |
| abstract_inverted_index.discovery | 18 |
| abstract_inverted_index.empirical | 146 |
| abstract_inverted_index.framework | 64 |
| abstract_inverted_index.introduce | 40 |
| abstract_inverted_index.learning. | 56 |
| abstract_inverted_index.performed | 117 |
| abstract_inverted_index.presented | 33 |
| abstract_inverted_index.remaining | 112 |
| abstract_inverted_index.synthetic | 180 |
| abstract_inverted_index.variables | 89, 105, 137 |
| abstract_inverted_index.collection | 178 |
| abstract_inverted_index.continuous | 140 |
| abstract_inverted_index.converting | 135 |
| abstract_inverted_index.especially | 15 |
| abstract_inverted_index.evaluation | 158 |
| abstract_inverted_index.hypothesis | 62 |
| abstract_inverted_index.mixed-type | 130 |
| abstract_inverted_index.nonlinear, | 169 |
| abstract_inverted_index.Conditional | 44 |
| abstract_inverted_index.algorithms, | 19 |
| abstract_inverted_index.challenging | 25 |
| abstract_inverted_index.conditional | 2, 50 |
| abstract_inverted_index.correlation | 121 |
| abstract_inverted_index.evaluations | 147 |
| abstract_inverted_index.information | 96 |
| abstract_inverted_index.outperforms | 151 |
| abstract_inverted_index.significant | 111 |
| abstract_inverted_index.statistical | 10 |
| abstract_inverted_index.variational | 143 |
| abstract_inverted_index.Independence | 45 |
| abstract_inverted_index.conditioning | 99 |
| abstract_inverted_index.consistently | 155 |
| abstract_inverted_index.contribution | 59 |
| abstract_inverted_index.conventional | 120 |
| abstract_inverted_index.independence | 51, 71 |
| abstract_inverted_index.investigated | 108 |
| abstract_inverted_index.dependencies, | 113 |
| abstract_inverted_index.relationships | 32 |
| abstract_inverted_index.dimensionality | 29 |
| abstract_inverted_index.independencies | 3 |
| abstract_inverted_index.representation | 55 |
| abstract_inverted_index.dequantization. | 144 |
| abstract_inverted_index.representations | 86 |
| abstract_inverted_index.state-of-the-art | 153 |
| abstract_inverted_index.high-dimensional, | 170 |
| abstract_inverted_index.representation-based | 43 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5102811209 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I149704539 |
| citation_normalized_percentile.value | 0.12185342 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |