Not Every Patch is Needed: Towards a More Efficient and Effective Backbone for Video-based Person Re-identification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.16811
This paper proposes a new effective and efficient plug-and-play backbone for video-based person re-identification (ReID). Conventional video-based ReID methods typically use CNN or transformer backbones to extract deep features for every position in every sampled video frame. Here, we argue that this exhaustive feature extraction could be unnecessary, since we find that different frames in a ReID video often exhibit small differences and contain many similar regions due to the relatively slight movements of human beings. Inspired by this, a more selective, efficient paradigm is explored in this paper. Specifically, we introduce a patch selection mechanism to reduce computational cost by choosing only the crucial and non-repetitive patches for feature extraction. Additionally, we present a novel network structure that generates and utilizes pseudo frame global context to address the issue of incomplete views resulting from sparse inputs. By incorporating these new designs, our backbone can achieve both high performance and low computational cost. Extensive experiments on multiple datasets show that our approach reduces the computational cost by 74\% compared to ViT-B and 28\% compared to ResNet50, while the accuracy is on par with ViT-B and outperforms ResNet50 significantly.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.16811
- https://arxiv.org/pdf/2501.16811
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406959683
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406959683Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.16811Digital Object Identifier
- Title
-
Not Every Patch is Needed: Towards a More Efficient and Effective Backbone for Video-based Person Re-identificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-28Full publication date if available
- Authors
-
Lanyun Zhu, Tianrun Chen, Deyi Ji, Jieping Ye, Jun LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.16811Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.16811Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.16811Direct OA link when available
- Concepts
-
Identification (biology), Computer science, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406959683 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.16811 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.16811 |
| ids.openalex | https://openalex.org/W4406959683 |
| fwci | |
| type | preprint |
| title | Not Every Patch is Needed: Towards a More Efficient and Effective Backbone for Video-based Person Re-identification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T12740 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9805999994277954 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Gait Recognition and Analysis |
| topics[2].id | https://openalex.org/T11448 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9754999876022339 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face recognition and analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116834253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7687654495239258 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[0].display_name | Identification (biology) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5034505724906921 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C86803240 |
| concepts[2].level | 0 |
| concepts[2].score | 0.05026644468307495 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[2].display_name | Biology |
| concepts[3].id | https://openalex.org/C59822182 |
| concepts[3].level | 1 |
| concepts[3].score | 0.0 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[3].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/identification |
| keywords[0].score | 0.7687654495239258 |
| keywords[0].display_name | Identification (biology) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5034505724906921 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/biology |
| keywords[2].score | 0.05026644468307495 |
| keywords[2].display_name | Biology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.16811 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.16811 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.16811 |
| locations[1].id | doi:10.48550/arxiv.2501.16811 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.16811 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5074956841 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7309-3330 |
| authorships[0].author.display_name | Lanyun Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhu, Lanyun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054714748 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0177-0157 |
| authorships[1].author.display_name | Tianrun Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Tianrun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5089146499 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7561-9789 |
| authorships[2].author.display_name | Deyi Ji |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ji, Deyi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5010419481 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8662-5818 |
| authorships[3].author.display_name | Jieping Ye |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ye, Jieping |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100361668 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7390-8958 |
| authorships[4].author.display_name | Jun Liu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Liu, Jun |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.16811 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Not Every Patch is Needed: Towards a More Efficient and Effective Backbone for Video-based Person Re-identification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.16811 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.16811 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.16811 |
| primary_location.id | pmh:oai:arXiv.org:2501.16811 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.16811 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.16811 |
| publication_date | 2025-01-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 55, 79, 92, 114 |
| abstract_inverted_index.By | 137 |
| abstract_inverted_index.be | 46 |
| abstract_inverted_index.by | 77, 100, 166 |
| abstract_inverted_index.in | 32, 54, 86 |
| abstract_inverted_index.is | 84, 179 |
| abstract_inverted_index.of | 73, 130 |
| abstract_inverted_index.on | 155, 180 |
| abstract_inverted_index.or | 22 |
| abstract_inverted_index.to | 25, 68, 96, 126, 169, 174 |
| abstract_inverted_index.we | 38, 49, 90, 112 |
| abstract_inverted_index.CNN | 21 |
| abstract_inverted_index.and | 6, 62, 105, 120, 149, 171, 184 |
| abstract_inverted_index.can | 144 |
| abstract_inverted_index.due | 67 |
| abstract_inverted_index.for | 10, 29, 108 |
| abstract_inverted_index.low | 150 |
| abstract_inverted_index.new | 4, 140 |
| abstract_inverted_index.our | 142, 160 |
| abstract_inverted_index.par | 181 |
| abstract_inverted_index.the | 69, 103, 128, 163, 177 |
| abstract_inverted_index.use | 20 |
| abstract_inverted_index.28\% | 172 |
| abstract_inverted_index.74\% | 167 |
| abstract_inverted_index.ReID | 17, 56 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.both | 146 |
| abstract_inverted_index.cost | 99, 165 |
| abstract_inverted_index.deep | 27 |
| abstract_inverted_index.find | 50 |
| abstract_inverted_index.from | 134 |
| abstract_inverted_index.high | 147 |
| abstract_inverted_index.many | 64 |
| abstract_inverted_index.more | 80 |
| abstract_inverted_index.only | 102 |
| abstract_inverted_index.show | 158 |
| abstract_inverted_index.that | 40, 51, 118, 159 |
| abstract_inverted_index.this | 41, 87 |
| abstract_inverted_index.with | 182 |
| abstract_inverted_index.Here, | 37 |
| abstract_inverted_index.ViT-B | 170, 183 |
| abstract_inverted_index.argue | 39 |
| abstract_inverted_index.cost. | 152 |
| abstract_inverted_index.could | 45 |
| abstract_inverted_index.every | 30, 33 |
| abstract_inverted_index.frame | 123 |
| abstract_inverted_index.human | 74 |
| abstract_inverted_index.issue | 129 |
| abstract_inverted_index.novel | 115 |
| abstract_inverted_index.often | 58 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.patch | 93 |
| abstract_inverted_index.since | 48 |
| abstract_inverted_index.small | 60 |
| abstract_inverted_index.these | 139 |
| abstract_inverted_index.this, | 78 |
| abstract_inverted_index.video | 35, 57 |
| abstract_inverted_index.views | 132 |
| abstract_inverted_index.while | 176 |
| abstract_inverted_index.frame. | 36 |
| abstract_inverted_index.frames | 53 |
| abstract_inverted_index.global | 124 |
| abstract_inverted_index.paper. | 88 |
| abstract_inverted_index.person | 12 |
| abstract_inverted_index.pseudo | 122 |
| abstract_inverted_index.reduce | 97 |
| abstract_inverted_index.slight | 71 |
| abstract_inverted_index.sparse | 135 |
| abstract_inverted_index.(ReID). | 14 |
| abstract_inverted_index.achieve | 145 |
| abstract_inverted_index.address | 127 |
| abstract_inverted_index.beings. | 75 |
| abstract_inverted_index.contain | 63 |
| abstract_inverted_index.context | 125 |
| abstract_inverted_index.crucial | 104 |
| abstract_inverted_index.exhibit | 59 |
| abstract_inverted_index.extract | 26 |
| abstract_inverted_index.feature | 43, 109 |
| abstract_inverted_index.inputs. | 136 |
| abstract_inverted_index.methods | 18 |
| abstract_inverted_index.network | 116 |
| abstract_inverted_index.patches | 107 |
| abstract_inverted_index.present | 113 |
| abstract_inverted_index.reduces | 162 |
| abstract_inverted_index.regions | 66 |
| abstract_inverted_index.sampled | 34 |
| abstract_inverted_index.similar | 65 |
| abstract_inverted_index.Inspired | 76 |
| abstract_inverted_index.ResNet50 | 186 |
| abstract_inverted_index.accuracy | 178 |
| abstract_inverted_index.approach | 161 |
| abstract_inverted_index.backbone | 9, 143 |
| abstract_inverted_index.choosing | 101 |
| abstract_inverted_index.compared | 168, 173 |
| abstract_inverted_index.datasets | 157 |
| abstract_inverted_index.designs, | 141 |
| abstract_inverted_index.explored | 85 |
| abstract_inverted_index.features | 28 |
| abstract_inverted_index.multiple | 156 |
| abstract_inverted_index.paradigm | 83 |
| abstract_inverted_index.position | 31 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.utilizes | 121 |
| abstract_inverted_index.Extensive | 153 |
| abstract_inverted_index.ResNet50, | 175 |
| abstract_inverted_index.backbones | 24 |
| abstract_inverted_index.different | 52 |
| abstract_inverted_index.effective | 5 |
| abstract_inverted_index.efficient | 7, 82 |
| abstract_inverted_index.generates | 119 |
| abstract_inverted_index.introduce | 91 |
| abstract_inverted_index.mechanism | 95 |
| abstract_inverted_index.movements | 72 |
| abstract_inverted_index.resulting | 133 |
| abstract_inverted_index.selection | 94 |
| abstract_inverted_index.structure | 117 |
| abstract_inverted_index.typically | 19 |
| abstract_inverted_index.exhaustive | 42 |
| abstract_inverted_index.extraction | 44 |
| abstract_inverted_index.incomplete | 131 |
| abstract_inverted_index.relatively | 70 |
| abstract_inverted_index.selective, | 81 |
| abstract_inverted_index.differences | 61 |
| abstract_inverted_index.experiments | 154 |
| abstract_inverted_index.extraction. | 110 |
| abstract_inverted_index.outperforms | 185 |
| abstract_inverted_index.performance | 148 |
| abstract_inverted_index.transformer | 23 |
| abstract_inverted_index.video-based | 11, 16 |
| abstract_inverted_index.Conventional | 15 |
| abstract_inverted_index.unnecessary, | 47 |
| abstract_inverted_index.Additionally, | 111 |
| abstract_inverted_index.Specifically, | 89 |
| abstract_inverted_index.computational | 98, 151, 164 |
| abstract_inverted_index.incorporating | 138 |
| abstract_inverted_index.plug-and-play | 8 |
| abstract_inverted_index.non-repetitive | 106 |
| abstract_inverted_index.significantly. | 187 |
| abstract_inverted_index.re-identification | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |