Novel Automatic Deep Learning Feature Extractor with Target Class Specific Feature Explanations Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/ijcnn54540.2023.10191143
Deep-learning models are popular machine learning models that have gained their popularity in various fields of computer vision, natural language processing etc, due to their excellent predictive accuracy and ability to automatically extract good features from raw input data. Though these models have these significant advantages, most deep learning models are notoriously black-box models. The features learned by these models are not explainable. The need to explain these predictions is important in many high stakes fields. In this work, we propose a method that uses convolutional layers like in Convolutional Neural Networks (CNNs) that automatically learns features from raw data. In our proposed method we extract feature representation that is unique to each target class in the given data. Visualizations of this unique representation explain the feature learned by the model for a specific target class. To classify an input data we use two approaches. The first approach uses the similarity scores to match the features learned for a particular instance with the extracted target class-specific features to make prediction. The second approach uses an intrinsically explainable model like logistic regression to make predictions. Thus our proposed method in addition to having good predictive accuracy, identifies features that are class-specific. The proposed method achieved an accuracy of 99.31 % on MNIST data set, 90.45% on CIFAR-10 data set and 96.45% accuracy on Assira data set.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/ijcnn54540.2023.10191143
- OA Status
- green
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385484573
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385484573Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/ijcnn54540.2023.10191143Digital Object Identifier
- Title
-
Novel Automatic Deep Learning Feature Extractor with Target Class Specific Feature ExplanationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-18Full publication date if available
- Authors
-
Deepthi Praveenlal Kuttichira, Brijesh Verma, Ashfaqur Rahman, Lipo WangList of authors in order
- Landing page
-
https://doi.org/10.1109/ijcnn54540.2023.10191143Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/10072/429703Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, MNIST database, Convolutional neural network, Machine learning, Deep learning, Feature (linguistics), Class (philosophy), Feature learning, Pattern recognition (psychology), Feature extraction, Set (abstract data type), Representation (politics), Data set, Law, Politics, Philosophy, Programming language, Political science, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385484573 |
|---|---|
| doi | https://doi.org/10.1109/ijcnn54540.2023.10191143 |
| ids.doi | https://doi.org/10.1109/ijcnn54540.2023.10191143 |
| ids.openalex | https://openalex.org/W4385484573 |
| fwci | 0.0 |
| type | article |
| title | Novel Automatic Deep Learning Feature Extractor with Target Class Specific Feature Explanations |
| awards[0].id | https://openalex.org/G4992058334 |
| awards[0].funder_id | https://openalex.org/F4320334704 |
| awards[0].display_name | |
| awards[0].funder_award_id | DP210100640 |
| awards[0].funder_display_name | Australian Research Council |
| biblio.issue | |
| biblio.volume | 3361 |
| biblio.last_page | 8 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| funders[0].id | https://openalex.org/F4320334704 |
| funders[0].ror | https://ror.org/05mmh0f86 |
| funders[0].display_name | Australian Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.8134936094284058 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8101283311843872 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C190502265 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7664147019386292 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17069496 |
| concepts[2].display_name | MNIST database |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6136194467544556 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6030438542366028 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.594222903251648 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5783937573432922 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C2777212361 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5282881855964661 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[7].display_name | Class (philosophy) |
| concepts[8].id | https://openalex.org/C59404180 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5268669724464417 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[8].display_name | Feature learning |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5087416768074036 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C52622490 |
| concepts[10].level | 2 |
| concepts[10].score | 0.48317423462867737 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[10].display_name | Feature extraction |
| concepts[11].id | https://openalex.org/C177264268 |
| concepts[11].level | 2 |
| concepts[11].score | 0.47794675827026367 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[11].display_name | Set (abstract data type) |
| concepts[12].id | https://openalex.org/C2776359362 |
| concepts[12].level | 3 |
| concepts[12].score | 0.462912380695343 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[12].display_name | Representation (politics) |
| concepts[13].id | https://openalex.org/C58489278 |
| concepts[13].level | 2 |
| concepts[13].score | 0.43216216564178467 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[13].display_name | Data set |
| concepts[14].id | https://openalex.org/C199539241 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[14].display_name | Law |
| concepts[15].id | https://openalex.org/C94625758 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[15].display_name | Politics |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.8134936094284058 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8101283311843872 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/mnist-database |
| keywords[2].score | 0.7664147019386292 |
| keywords[2].display_name | MNIST database |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.6136194467544556 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.6030438542366028 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.594222903251648 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5783937573432922 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/class |
| keywords[7].score | 0.5282881855964661 |
| keywords[7].display_name | Class (philosophy) |
| keywords[8].id | https://openalex.org/keywords/feature-learning |
| keywords[8].score | 0.5268669724464417 |
| keywords[8].display_name | Feature learning |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.5087416768074036 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/feature-extraction |
| keywords[10].score | 0.48317423462867737 |
| keywords[10].display_name | Feature extraction |
| keywords[11].id | https://openalex.org/keywords/set |
| keywords[11].score | 0.47794675827026367 |
| keywords[11].display_name | Set (abstract data type) |
| keywords[12].id | https://openalex.org/keywords/representation |
| keywords[12].score | 0.462912380695343 |
| keywords[12].display_name | Representation (politics) |
| keywords[13].id | https://openalex.org/keywords/data-set |
| keywords[13].score | 0.43216216564178467 |
| keywords[13].display_name | Data set |
| language | en |
| locations[0].id | doi:10.1109/ijcnn54540.2023.10191143 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2023 International Joint Conference on Neural Networks (IJCNN) |
| locations[0].landing_page_url | https://doi.org/10.1109/ijcnn54540.2023.10191143 |
| locations[1].id | pmh:oai:research-repository.griffith.edu.au:10072/429703 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402548 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| locations[1].source.host_organization | https://openalex.org/I11701301 |
| locations[1].source.host_organization_name | Griffith University |
| locations[1].source.host_organization_lineage | https://openalex.org/I11701301 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference output |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10072/429703 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5112736114 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Deepthi Praveenlal Kuttichira |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I11701301 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I11701301 |
| authorships[0].institutions[0].ror | https://ror.org/02sc3r913 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I11701301 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Griffith University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deepthi Praveenlal Kuttichira |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia |
| authorships[1].author.id | https://openalex.org/A5026528338 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4618-0479 |
| authorships[1].author.display_name | Brijesh Verma |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I11701301 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I11701301 |
| authorships[1].institutions[0].ror | https://ror.org/02sc3r913 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I11701301 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Griffith University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Brijesh Verma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia |
| authorships[2].author.id | https://openalex.org/A5000151716 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0236-5447 |
| authorships[2].author.display_name | Ashfaqur Rahman |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1292875679, https://openalex.org/I42894916 |
| authorships[2].affiliations[0].raw_affiliation_string | Data 61, CSIRO, Hobart, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I1292875679 |
| authorships[2].institutions[0].ror | https://ror.org/03qn8fb07 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I4387156119 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Commonwealth Scientific and Industrial Research Organisation |
| authorships[2].institutions[1].id | https://openalex.org/I42894916 |
| authorships[2].institutions[1].ror | https://ror.org/03q397159 |
| authorships[2].institutions[1].type | other |
| authorships[2].institutions[1].lineage | https://openalex.org/I1292875679, https://openalex.org/I2801453606, https://openalex.org/I42894916, https://openalex.org/I4387156119 |
| authorships[2].institutions[1].country_code | AU |
| authorships[2].institutions[1].display_name | Data61 |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ashfaqur Rahman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Data 61, CSIRO, Hobart, Australia |
| authorships[3].author.id | https://openalex.org/A5086764741 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4257-7639 |
| authorships[3].author.display_name | Lipo Wang |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical and Electronic Engineering name of organization NTU, Singapore |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lipo Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical and Electronic Engineering name of organization NTU, Singapore |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/10072/429703 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Novel Automatic Deep Learning Feature Extractor with Target Class Specific Feature Explanations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W4386603768, https://openalex.org/W2950475743, https://openalex.org/W2886711096, https://openalex.org/W2750384547, https://openalex.org/W3036048022, https://openalex.org/W4309224979, https://openalex.org/W3026879719, https://openalex.org/W2937381246, https://openalex.org/W3185156046, https://openalex.org/W4309346246 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:research-repository.griffith.edu.au:10072/429703 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402548 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| best_oa_location.source.host_organization | https://openalex.org/I11701301 |
| best_oa_location.source.host_organization_name | Griffith University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I11701301 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Conference output |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/10072/429703 |
| primary_location.id | doi:10.1109/ijcnn54540.2023.10191143 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2023 International Joint Conference on Neural Networks (IJCNN) |
| primary_location.landing_page_url | https://doi.org/10.1109/ijcnn54540.2023.10191143 |
| publication_date | 2023-06-18 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6703326205, https://openalex.org/W2962858109, https://openalex.org/W6782949407, https://openalex.org/W3135613089, https://openalex.org/W3199173685, https://openalex.org/W2764024122, https://openalex.org/W3116286104, https://openalex.org/W3093687066, https://openalex.org/W2898377853, https://openalex.org/W2921131065, https://openalex.org/W4283742679, https://openalex.org/W6632100814, https://openalex.org/W6784491624, https://openalex.org/W3045825034, https://openalex.org/W6796187516, https://openalex.org/W4297091060, https://openalex.org/W3167787620, https://openalex.org/W4225913583, https://openalex.org/W4287640226, https://openalex.org/W1538131130, https://openalex.org/W2336525064, https://openalex.org/W3163334550, https://openalex.org/W3084188882 |
| referenced_works_count | 23 |
| abstract_inverted_index.% | 208 |
| abstract_inverted_index.a | 81, 132, 158 |
| abstract_inverted_index.In | 76, 100 |
| abstract_inverted_index.To | 136 |
| abstract_inverted_index.an | 138, 174, 204 |
| abstract_inverted_index.by | 57, 128 |
| abstract_inverted_index.in | 12, 71, 88, 115, 188 |
| abstract_inverted_index.is | 69, 109 |
| abstract_inverted_index.of | 15, 120, 206 |
| abstract_inverted_index.on | 209, 214, 221 |
| abstract_inverted_index.to | 23, 30, 65, 111, 152, 167, 181, 190 |
| abstract_inverted_index.we | 79, 104, 141 |
| abstract_inverted_index.The | 54, 63, 145, 170, 200 |
| abstract_inverted_index.and | 28, 218 |
| abstract_inverted_index.are | 2, 50, 60, 198 |
| abstract_inverted_index.due | 22 |
| abstract_inverted_index.for | 131, 157 |
| abstract_inverted_index.not | 61 |
| abstract_inverted_index.our | 101, 185 |
| abstract_inverted_index.raw | 36, 98 |
| abstract_inverted_index.set | 217 |
| abstract_inverted_index.the | 116, 125, 129, 149, 154, 162 |
| abstract_inverted_index.two | 143 |
| abstract_inverted_index.use | 142 |
| abstract_inverted_index.Thus | 184 |
| abstract_inverted_index.data | 140, 211, 216, 223 |
| abstract_inverted_index.deep | 47 |
| abstract_inverted_index.each | 112 |
| abstract_inverted_index.etc, | 21 |
| abstract_inverted_index.from | 35, 97 |
| abstract_inverted_index.good | 33, 192 |
| abstract_inverted_index.have | 8, 42 |
| abstract_inverted_index.high | 73 |
| abstract_inverted_index.like | 87, 178 |
| abstract_inverted_index.make | 168, 182 |
| abstract_inverted_index.many | 72 |
| abstract_inverted_index.most | 46 |
| abstract_inverted_index.need | 64 |
| abstract_inverted_index.set, | 212 |
| abstract_inverted_index.set. | 224 |
| abstract_inverted_index.that | 7, 83, 93, 108, 197 |
| abstract_inverted_index.this | 77, 121 |
| abstract_inverted_index.uses | 84, 148, 173 |
| abstract_inverted_index.with | 161 |
| abstract_inverted_index.99.31 | 207 |
| abstract_inverted_index.MNIST | 210 |
| abstract_inverted_index.class | 114 |
| abstract_inverted_index.data. | 38, 99, 118 |
| abstract_inverted_index.first | 146 |
| abstract_inverted_index.given | 117 |
| abstract_inverted_index.input | 37, 139 |
| abstract_inverted_index.match | 153 |
| abstract_inverted_index.model | 130, 177 |
| abstract_inverted_index.their | 10, 24 |
| abstract_inverted_index.these | 40, 43, 58, 67 |
| abstract_inverted_index.work, | 78 |
| abstract_inverted_index.(CNNs) | 92 |
| abstract_inverted_index.90.45% | 213 |
| abstract_inverted_index.96.45% | 219 |
| abstract_inverted_index.Assira | 222 |
| abstract_inverted_index.Neural | 90 |
| abstract_inverted_index.Though | 39 |
| abstract_inverted_index.class. | 135 |
| abstract_inverted_index.fields | 14 |
| abstract_inverted_index.gained | 9 |
| abstract_inverted_index.having | 191 |
| abstract_inverted_index.layers | 86 |
| abstract_inverted_index.learns | 95 |
| abstract_inverted_index.method | 82, 103, 187, 202 |
| abstract_inverted_index.models | 1, 6, 41, 49, 59 |
| abstract_inverted_index.scores | 151 |
| abstract_inverted_index.second | 171 |
| abstract_inverted_index.stakes | 74 |
| abstract_inverted_index.target | 113, 134, 164 |
| abstract_inverted_index.unique | 110, 122 |
| abstract_inverted_index.ability | 29 |
| abstract_inverted_index.explain | 66, 124 |
| abstract_inverted_index.extract | 32, 105 |
| abstract_inverted_index.feature | 106, 126 |
| abstract_inverted_index.fields. | 75 |
| abstract_inverted_index.learned | 56, 127, 156 |
| abstract_inverted_index.machine | 4 |
| abstract_inverted_index.models. | 53 |
| abstract_inverted_index.natural | 18 |
| abstract_inverted_index.popular | 3 |
| abstract_inverted_index.propose | 80 |
| abstract_inverted_index.various | 13 |
| abstract_inverted_index.vision, | 17 |
| abstract_inverted_index.CIFAR-10 | 215 |
| abstract_inverted_index.Networks | 91 |
| abstract_inverted_index.accuracy | 27, 205, 220 |
| abstract_inverted_index.achieved | 203 |
| abstract_inverted_index.addition | 189 |
| abstract_inverted_index.approach | 147, 172 |
| abstract_inverted_index.classify | 137 |
| abstract_inverted_index.computer | 16 |
| abstract_inverted_index.features | 34, 55, 96, 155, 166, 196 |
| abstract_inverted_index.instance | 160 |
| abstract_inverted_index.language | 19 |
| abstract_inverted_index.learning | 5, 48 |
| abstract_inverted_index.logistic | 179 |
| abstract_inverted_index.proposed | 102, 186, 201 |
| abstract_inverted_index.specific | 133 |
| abstract_inverted_index.accuracy, | 194 |
| abstract_inverted_index.black-box | 52 |
| abstract_inverted_index.excellent | 25 |
| abstract_inverted_index.extracted | 163 |
| abstract_inverted_index.important | 70 |
| abstract_inverted_index.identifies | 195 |
| abstract_inverted_index.particular | 159 |
| abstract_inverted_index.popularity | 11 |
| abstract_inverted_index.predictive | 26, 193 |
| abstract_inverted_index.processing | 20 |
| abstract_inverted_index.regression | 180 |
| abstract_inverted_index.similarity | 150 |
| abstract_inverted_index.advantages, | 45 |
| abstract_inverted_index.approaches. | 144 |
| abstract_inverted_index.explainable | 176 |
| abstract_inverted_index.notoriously | 51 |
| abstract_inverted_index.prediction. | 169 |
| abstract_inverted_index.predictions | 68 |
| abstract_inverted_index.significant | 44 |
| abstract_inverted_index.explainable. | 62 |
| abstract_inverted_index.predictions. | 183 |
| abstract_inverted_index.Convolutional | 89 |
| abstract_inverted_index.Deep-learning | 0 |
| abstract_inverted_index.automatically | 31, 94 |
| abstract_inverted_index.convolutional | 85 |
| abstract_inverted_index.intrinsically | 175 |
| abstract_inverted_index.Visualizations | 119 |
| abstract_inverted_index.class-specific | 165 |
| abstract_inverted_index.representation | 107, 123 |
| abstract_inverted_index.class-specific. | 199 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.1022151 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |