Novel Autosegmentation Spatial Similarity Metrics Capture the Time Required to Correct Segmentations Better Than Traditional Metrics in a Thoracic Cavity Segmentation Workflow Article Swipe
Kendall Kiser
,
Arko Barman
,
Sonja Stieb
,
Clifton D. Fuller
,
Luca Giancardo
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1007/s10278-021-00460-3
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1007/s10278-021-00460-3
Related Topics
Concepts
Segmentation
Similarity (geometry)
Sørensen–Dice coefficient
Workflow
Artificial intelligence
Metric (unit)
Spearman's rank correlation coefficient
Dice
Rank correlation
Computer science
Pearson product-moment correlation coefficient
Pattern recognition (psychology)
Rank (graph theory)
Correlation
Jaccard index
Data mining
Image segmentation
Statistics
Machine learning
Mathematics
Image (mathematics)
Combinatorics
Geometry
Economics
Database
Operations management
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10278-021-00460-3
- https://link.springer.com/content/pdf/10.1007/s10278-021-00460-3.pdf
- OA Status
- hybrid
- Cited By
- 41
- References
- 77
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3165529692
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3165529692Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10278-021-00460-3Digital Object Identifier
- Title
-
Novel Autosegmentation Spatial Similarity Metrics Capture the Time Required to Correct Segmentations Better Than Traditional Metrics in a Thoracic Cavity Segmentation WorkflowWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-23Full publication date if available
- Authors
-
Kendall Kiser, Arko Barman, Sonja Stieb, Clifton D. Fuller, Luca GiancardoList of authors in order
- Landing page
-
https://doi.org/10.1007/s10278-021-00460-3Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10278-021-00460-3.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10278-021-00460-3.pdfDirect OA link when available
- Concepts
-
Segmentation, Similarity (geometry), Sørensen–Dice coefficient, Workflow, Artificial intelligence, Metric (unit), Spearman's rank correlation coefficient, Dice, Rank correlation, Computer science, Pearson product-moment correlation coefficient, Pattern recognition (psychology), Rank (graph theory), Correlation, Jaccard index, Data mining, Image segmentation, Statistics, Machine learning, Mathematics, Image (mathematics), Combinatorics, Geometry, Economics, Database, Operations managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
41Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 10, 2023: 10, 2022: 5, 2021: 8Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3165529692 |
|---|---|
| doi | https://doi.org/10.1007/s10278-021-00460-3 |
| ids.doi | https://doi.org/10.1007/s10278-021-00460-3 |
| ids.mag | 3165529692 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34027588 |
| ids.openalex | https://openalex.org/W3165529692 |
| fwci | 3.0492758 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D019985 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Benchmarking |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D035423 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Thoracic Cavity |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D014057 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Tomography, X-Ray Computed |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D057188 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Workflow |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D019985 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Benchmarking |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D035423 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Thoracic Cavity |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D014057 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Tomography, X-Ray Computed |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D057188 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Workflow |
| type | article |
| title | Novel Autosegmentation Spatial Similarity Metrics Capture the Time Required to Correct Segmentations Better Than Traditional Metrics in a Thoracic Cavity Segmentation Workflow |
| awards[0].id | https://openalex.org/G8148709150 |
| awards[0].funder_id | https://openalex.org/F4320337391 |
| awards[0].display_name | |
| awards[0].funder_award_id | NSF 1933369 |
| awards[0].funder_display_name | Division of Civil, Mechanical and Manufacturing Innovation |
| awards[1].id | https://openalex.org/G9625747 |
| awards[1].funder_id | https://openalex.org/F4320337351 |
| awards[1].display_name | |
| awards[1].funder_award_id | 1R01CA214825 |
| awards[1].funder_display_name | National Cancer Institute |
| awards[2].id | https://openalex.org/G941367620 |
| awards[2].funder_id | https://openalex.org/F4320337380 |
| awards[2].display_name | |
| awards[2].funder_award_id | NSF 1557679 |
| awards[2].funder_display_name | Division of Mathematical Sciences |
| awards[3].id | https://openalex.org/G6087433272 |
| awards[3].funder_id | https://openalex.org/F4320337365 |
| awards[3].display_name | |
| awards[3].funder_award_id | R56DE025248 |
| awards[3].funder_display_name | National Institute of Dental and Craniofacial Research |
| awards[4].id | https://openalex.org/G573350764 |
| awards[4].funder_id | https://openalex.org/F4320337351 |
| awards[4].display_name | |
| awards[4].funder_award_id | P50CA097007 |
| awards[4].funder_display_name | National Cancer Institute |
| awards[5].id | https://openalex.org/G8601149478 |
| awards[5].funder_id | https://openalex.org/F4320337351 |
| awards[5].display_name | |
| awards[5].funder_award_id | P30CA016672 |
| awards[5].funder_display_name | National Cancer Institute |
| awards[6].id | https://openalex.org/G1881506306 |
| awards[6].funder_id | https://openalex.org/F4320337365 |
| awards[6].display_name | |
| awards[6].funder_award_id | 1R01DE025248 |
| awards[6].funder_display_name | National Institute of Dental and Craniofacial Research |
| awards[7].id | https://openalex.org/G1413527490 |
| awards[7].funder_id | https://openalex.org/F4320332161 |
| awards[7].display_name | |
| awards[7].funder_award_id | UL1TR003167 |
| awards[7].funder_display_name | National Institutes of Health |
| awards[8].id | https://openalex.org/G8213806121 |
| awards[8].funder_id | https://openalex.org/F4320337363 |
| awards[8].display_name | |
| awards[8].funder_award_id | R25EB025787-01 |
| awards[8].funder_display_name | National Institute of Biomedical Imaging and Bioengineering |
| awards[9].id | https://openalex.org/G4741921804 |
| awards[9].funder_id | https://openalex.org/F4320308129 |
| awards[9].display_name | |
| awards[9].funder_award_id | RP 170668 |
| awards[9].funder_display_name | Cancer Prevention and Research Institute of Texas |
| awards[10].id | https://openalex.org/G5107130650 |
| awards[10].funder_id | https://openalex.org/F4320337351 |
| awards[10].display_name | |
| awards[10].funder_award_id | 1R01CA218148 |
| awards[10].funder_display_name | National Cancer Institute |
| biblio.issue | 3 |
| biblio.volume | 34 |
| biblio.last_page | 553 |
| biblio.first_page | 541 |
| topics[0].id | https://openalex.org/T12386 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced X-ray and CT Imaging |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10844 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiation Dose and Imaging |
| funders[0].id | https://openalex.org/F4320308129 |
| funders[0].ror | https://ror.org/0003xa228 |
| funders[0].display_name | Cancer Prevention and Research Institute of Texas |
| funders[1].id | https://openalex.org/F4320332161 |
| funders[1].ror | https://ror.org/01cwqze88 |
| funders[1].display_name | National Institutes of Health |
| funders[2].id | https://openalex.org/F4320337351 |
| funders[2].ror | https://ror.org/040gcmg81 |
| funders[2].display_name | National Cancer Institute |
| funders[3].id | https://openalex.org/F4320337363 |
| funders[3].ror | https://ror.org/00372qc85 |
| funders[3].display_name | National Institute of Biomedical Imaging and Bioengineering |
| funders[4].id | https://openalex.org/F4320337365 |
| funders[4].ror | https://ror.org/004a2wv92 |
| funders[4].display_name | National Institute of Dental and Craniofacial Research |
| funders[5].id | https://openalex.org/F4320337380 |
| funders[5].ror | https://ror.org/051fftw81 |
| funders[5].display_name | Division of Mathematical Sciences |
| funders[6].id | https://openalex.org/F4320337391 |
| funders[6].ror | https://ror.org/028yd4c30 |
| funders[6].display_name | Division of Civil, Mechanical and Manufacturing Innovation |
| is_xpac | False |
| apc_list.value | 3190 |
| apc_list.currency | EUR |
| apc_list.value_usd | 4190 |
| apc_paid.value | 3190 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 4190 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7570279836654663 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C103278499 |
| concepts[1].level | 3 |
| concepts[1].score | 0.728060781955719 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[1].display_name | Similarity (geometry) |
| concepts[2].id | https://openalex.org/C163892561 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6944226622581482 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2613728 |
| concepts[2].display_name | Sørensen–Dice coefficient |
| concepts[3].id | https://openalex.org/C177212765 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6398032903671265 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[3].display_name | Workflow |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6236457228660583 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C176217482 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6010075807571411 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[5].display_name | Metric (unit) |
| concepts[6].id | https://openalex.org/C159744936 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5988614559173584 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1126730 |
| concepts[6].display_name | Spearman's rank correlation coefficient |
| concepts[7].id | https://openalex.org/C22029948 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5984514951705933 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q45089 |
| concepts[7].display_name | Dice |
| concepts[8].id | https://openalex.org/C101601086 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5873690843582153 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3753228 |
| concepts[8].display_name | Rank correlation |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.5805480480194092 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C55078378 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5549238920211792 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1136628 |
| concepts[10].display_name | Pearson product-moment correlation coefficient |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.5350011587142944 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C164226766 |
| concepts[12].level | 2 |
| concepts[12].score | 0.48607829213142395 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[12].display_name | Rank (graph theory) |
| concepts[13].id | https://openalex.org/C117220453 |
| concepts[13].level | 2 |
| concepts[13].score | 0.474132776260376 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[13].display_name | Correlation |
| concepts[14].id | https://openalex.org/C203519979 |
| concepts[14].level | 3 |
| concepts[14].score | 0.45914268493652344 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q865360 |
| concepts[14].display_name | Jaccard index |
| concepts[15].id | https://openalex.org/C124101348 |
| concepts[15].level | 1 |
| concepts[15].score | 0.37835389375686646 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[15].display_name | Data mining |
| concepts[16].id | https://openalex.org/C124504099 |
| concepts[16].level | 3 |
| concepts[16].score | 0.34988778829574585 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[16].display_name | Image segmentation |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.2912459969520569 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C119857082 |
| concepts[18].level | 1 |
| concepts[18].score | 0.2512296736240387 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[18].display_name | Machine learning |
| concepts[19].id | https://openalex.org/C33923547 |
| concepts[19].level | 0 |
| concepts[19].score | 0.22758448123931885 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[19].display_name | Mathematics |
| concepts[20].id | https://openalex.org/C115961682 |
| concepts[20].level | 2 |
| concepts[20].score | 0.17647802829742432 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[20].display_name | Image (mathematics) |
| concepts[21].id | https://openalex.org/C114614502 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[21].display_name | Combinatorics |
| concepts[22].id | https://openalex.org/C2524010 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[22].display_name | Geometry |
| concepts[23].id | https://openalex.org/C162324750 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[23].display_name | Economics |
| concepts[24].id | https://openalex.org/C77088390 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[24].display_name | Database |
| concepts[25].id | https://openalex.org/C21547014 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[25].display_name | Operations management |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7570279836654663 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/similarity |
| keywords[1].score | 0.728060781955719 |
| keywords[1].display_name | Similarity (geometry) |
| keywords[2].id | https://openalex.org/keywords/sørensen–dice-coefficient |
| keywords[2].score | 0.6944226622581482 |
| keywords[2].display_name | Sørensen–Dice coefficient |
| keywords[3].id | https://openalex.org/keywords/workflow |
| keywords[3].score | 0.6398032903671265 |
| keywords[3].display_name | Workflow |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6236457228660583 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/metric |
| keywords[5].score | 0.6010075807571411 |
| keywords[5].display_name | Metric (unit) |
| keywords[6].id | https://openalex.org/keywords/spearmans-rank-correlation-coefficient |
| keywords[6].score | 0.5988614559173584 |
| keywords[6].display_name | Spearman's rank correlation coefficient |
| keywords[7].id | https://openalex.org/keywords/dice |
| keywords[7].score | 0.5984514951705933 |
| keywords[7].display_name | Dice |
| keywords[8].id | https://openalex.org/keywords/rank-correlation |
| keywords[8].score | 0.5873690843582153 |
| keywords[8].display_name | Rank correlation |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.5805480480194092 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/pearson-product-moment-correlation-coefficient |
| keywords[10].score | 0.5549238920211792 |
| keywords[10].display_name | Pearson product-moment correlation coefficient |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.5350011587142944 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/rank |
| keywords[12].score | 0.48607829213142395 |
| keywords[12].display_name | Rank (graph theory) |
| keywords[13].id | https://openalex.org/keywords/correlation |
| keywords[13].score | 0.474132776260376 |
| keywords[13].display_name | Correlation |
| keywords[14].id | https://openalex.org/keywords/jaccard-index |
| keywords[14].score | 0.45914268493652344 |
| keywords[14].display_name | Jaccard index |
| keywords[15].id | https://openalex.org/keywords/data-mining |
| keywords[15].score | 0.37835389375686646 |
| keywords[15].display_name | Data mining |
| keywords[16].id | https://openalex.org/keywords/image-segmentation |
| keywords[16].score | 0.34988778829574585 |
| keywords[16].display_name | Image segmentation |
| keywords[17].id | https://openalex.org/keywords/statistics |
| keywords[17].score | 0.2912459969520569 |
| keywords[17].display_name | Statistics |
| keywords[18].id | https://openalex.org/keywords/machine-learning |
| keywords[18].score | 0.2512296736240387 |
| keywords[18].display_name | Machine learning |
| keywords[19].id | https://openalex.org/keywords/mathematics |
| keywords[19].score | 0.22758448123931885 |
| keywords[19].display_name | Mathematics |
| keywords[20].id | https://openalex.org/keywords/image |
| keywords[20].score | 0.17647802829742432 |
| keywords[20].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1007/s10278-021-00460-3 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S62275304 |
| locations[0].source.issn | 0897-1889, 1618-727X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0897-1889 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Digital Imaging |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10278-021-00460-3.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Digital Imaging |
| locations[0].landing_page_url | https://doi.org/10.1007/s10278-021-00460-3 |
| locations[1].id | pmid:34027588 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of digital imaging |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34027588 |
| locations[2].id | pmh:oai:digitalcommons.wustl.edu:oa_4-2394 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400764 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Digital Commons@Becker (Washington University School of Medicine) |
| locations[2].source.host_organization | https://openalex.org/I204465549 |
| locations[2].source.host_organization_name | Washington University in St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I204465549 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | 2020-Current year OA Pubs |
| locations[2].landing_page_url | https://digitalcommons.wustl.edu/oa_4/1396 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8329111 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | J Digit Imaging |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8329111 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5040043131 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7457-5534 |
| authorships[0].author.display_name | Kendall Kiser |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204465549 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA |
| authorships[0].institutions[0].id | https://openalex.org/I204465549 |
| authorships[0].institutions[0].ror | https://ror.org/01yc7t268 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204465549 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Washington University in St. Louis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kendall J. Kiser |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA |
| authorships[1].author.id | https://openalex.org/A5087891919 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5357-5786 |
| authorships[1].author.display_name | Arko Barman |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I919571938 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Precision Health, UT Health School of Biomedical Informatics, Houston, TX, USA |
| authorships[1].institutions[0].id | https://openalex.org/I919571938 |
| authorships[1].institutions[0].ror | https://ror.org/03gds6c39 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I919571938 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas Health Science Center at Houston |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Arko Barman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Precision Health, UT Health School of Biomedical Informatics, Houston, TX, USA |
| authorships[2].author.id | https://openalex.org/A5061176772 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4360-2277 |
| authorships[2].author.display_name | Sonja Stieb |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[2].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sonja Stieb |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA |
| authorships[3].author.id | https://openalex.org/A5052234283 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5264-3994 |
| authorships[3].author.display_name | Clifton D. Fuller |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1343551460 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1343551460 |
| authorships[3].institutions[0].ror | https://ror.org/04twxam07 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1343551460 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | The University of Texas MD Anderson Cancer Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Clifton D. Fuller |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA |
| authorships[4].author.id | https://openalex.org/A5026804774 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4862-2277 |
| authorships[4].author.display_name | Luca Giancardo |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I919571938 |
| authorships[4].affiliations[0].raw_affiliation_string | Center for Precision Health, UT Health School of Biomedical Informatics, Houston, TX, USA |
| authorships[4].institutions[0].id | https://openalex.org/I919571938 |
| authorships[4].institutions[0].ror | https://ror.org/03gds6c39 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I919571938 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | The University of Texas Health Science Center at Houston |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Luca Giancardo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Precision Health, UT Health School of Biomedical Informatics, Houston, TX, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10278-021-00460-3.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Novel Autosegmentation Spatial Similarity Metrics Capture the Time Required to Correct Segmentations Better Than Traditional Metrics in a Thoracic Cavity Segmentation Workflow |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-20T23:13:51.555489 |
| primary_topic.id | https://openalex.org/T12386 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced X-ray and CT Imaging |
| related_works | https://openalex.org/W2553941787, https://openalex.org/W3091783519, https://openalex.org/W3012828488, https://openalex.org/W2953570019, https://openalex.org/W4389060404, https://openalex.org/W2973136608, https://openalex.org/W3116883888, https://openalex.org/W4286233748, https://openalex.org/W4367019122, https://openalex.org/W2096962026 |
| cited_by_count | 41 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 8 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1007/s10278-021-00460-3 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S62275304 |
| best_oa_location.source.issn | 0897-1889, 1618-727X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0897-1889 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Digital Imaging |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10278-021-00460-3.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Digital Imaging |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10278-021-00460-3 |
| primary_location.id | doi:10.1007/s10278-021-00460-3 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S62275304 |
| primary_location.source.issn | 0897-1889, 1618-727X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0897-1889 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Digital Imaging |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10278-021-00460-3.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Digital Imaging |
| primary_location.landing_page_url | https://doi.org/10.1007/s10278-021-00460-3 |
| publication_date | 2021-05-23 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2975101641, https://openalex.org/W2079934729, https://openalex.org/W2904384642, https://openalex.org/W2903456150, https://openalex.org/W2766463156, https://openalex.org/W2979392262, https://openalex.org/W2982594088, https://openalex.org/W2399141010, https://openalex.org/W2884478565, https://openalex.org/W2954191198, https://openalex.org/W3006598587, https://openalex.org/W2103004421, https://openalex.org/W2998789541, https://openalex.org/W3011643259, https://openalex.org/W2082425609, https://openalex.org/W2213937052, https://openalex.org/W2128425452, https://openalex.org/W2092439691, https://openalex.org/W2127668516, https://openalex.org/W2531931036, https://openalex.org/W2359037794, https://openalex.org/W2943227847, https://openalex.org/W2888366521, https://openalex.org/W2996024615, https://openalex.org/W2417892395, https://openalex.org/W2981660502, https://openalex.org/W2894315883, https://openalex.org/W2994739006, https://openalex.org/W2946394741, https://openalex.org/W2897765200, https://openalex.org/W2801907923, https://openalex.org/W2954725015, https://openalex.org/W2809470868, https://openalex.org/W3113231417, https://openalex.org/W2803677800, https://openalex.org/W2757454662, https://openalex.org/W2972534068, https://openalex.org/W2585890928, https://openalex.org/W2168650498, https://openalex.org/W1966764112, https://openalex.org/W161036267, https://openalex.org/W3098759101, https://openalex.org/W2888667538, https://openalex.org/W2726102591, https://openalex.org/W2097580797, https://openalex.org/W2465575813, https://openalex.org/W2888538030, https://openalex.org/W1987869189, https://openalex.org/W2890012362, https://openalex.org/W6817691451, https://openalex.org/W3047489308, https://openalex.org/W6977944434, https://openalex.org/W2290321704, https://openalex.org/W2127890285, https://openalex.org/W1909740415, https://openalex.org/W2110114082, https://openalex.org/W2151591509, https://openalex.org/W2342249984, https://openalex.org/W2558300230, https://openalex.org/W2001086187, https://openalex.org/W2168745915, https://openalex.org/W1972978214, https://openalex.org/W4248855359, https://openalex.org/W2900237898, https://openalex.org/W2790751088, https://openalex.org/W2977994212, https://openalex.org/W2889949934, https://openalex.org/W2939071985, https://openalex.org/W2951883912, https://openalex.org/W2560725027, https://openalex.org/W2919115771, https://openalex.org/W2618530766, https://openalex.org/W2889822862, https://openalex.org/W1504663295, https://openalex.org/W2061554433, https://openalex.org/W2083551778, https://openalex.org/W2892238589 |
| referenced_works_count | 77 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5040043131 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I204465549 |
| citation_normalized_percentile.value | 0.90859865 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |