Novel Class Discovery for Point Cloud Segmentation via Joint Learning of Causal Representation and Reasoning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.13307
In this paper, we focus on Novel Class Discovery for Point Cloud Segmentation (3D-NCD), aiming to learn a model that can segment unlabeled (novel) 3D classes using only the supervision from labeled (base) 3D classes. The key to this task is to setup the exact correlations between the point representations and their base class labels, as well as the representation correlations between the points from base and novel classes. A coarse or statistical correlation learning may lead to the confusion in novel class inference. lf we impose a causal relationship as a strong correlated constraint upon the learning process, the essential point cloud representations that accurately correspond to the classes should be uncovered. To this end, we introduce a structural causal model (SCM) to re-formalize the 3D-NCD problem and propose a new method, i.e., Joint Learning of Causal Representation and Reasoning. Specifically, we first analyze hidden confounders in the base class representations and the causal relationships between the base and novel classes through SCM. We devise a causal representation prototype that eliminates confounders to capture the causal representations of base classes. A graph structure is then used to model the causal relationships between the base classes' causal representation prototypes and the novel class prototypes, enabling causal reasoning from base to novel classes. Extensive experiments and visualization results on 3D and 2D NCD semantic segmentation demonstrate the superiorities of our method.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.13307
- https://arxiv.org/pdf/2510.13307
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415275671
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415275671Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.13307Digital Object Identifier
- Title
-
Novel Class Discovery for Point Cloud Segmentation via Joint Learning of Causal Representation and ReasoningWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-15Full publication date if available
- Authors
-
Yang Li, Aming Wu, Zihao Zhang, Yahong HanList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.13307Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.13307Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.13307Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415275671 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.13307 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.13307 |
| ids.openalex | https://openalex.org/W4415275671 |
| fwci | |
| type | preprint |
| title | Novel Class Discovery for Point Cloud Segmentation via Joint Learning of Causal Representation and Reasoning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14339 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9818999767303467 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Processing and 3D Reconstruction |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.979200005531311 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T12549 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9394000172615051 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Object Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.13307 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.13307 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.13307 |
| locations[1].id | doi:10.48550/arxiv.2510.13307 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.13307 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114377934 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2053-6393 |
| authorships[0].author.display_name | Yang Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Yang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103126895 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Aming Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wu, Aming |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5040055714 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-9664-0218 |
| authorships[2].author.display_name | Zihao Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Zihao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5031819155 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2768-1398 |
| authorships[3].author.display_name | Yahong Han |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Han, Yahong |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.13307 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-17T00:00:00 |
| display_name | Novel Class Discovery for Point Cloud Segmentation via Joint Learning of Causal Representation and Reasoning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14339 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9818999767303467 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Processing and 3D Reconstruction |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.13307 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.13307 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.13307 |
| primary_location.id | pmh:oai:arXiv.org:2510.13307 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.13307 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.13307 |
| publication_date | 2025-10-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 69, 181 |
| abstract_inverted_index.a | 17, 87, 91, 118, 130, 166 |
| abstract_inverted_index.2D | 220 |
| abstract_inverted_index.3D | 24, 33, 218 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 113 |
| abstract_inverted_index.We | 164 |
| abstract_inverted_index.as | 55, 57, 90 |
| abstract_inverted_index.be | 111 |
| abstract_inverted_index.in | 80, 147 |
| abstract_inverted_index.is | 40, 184 |
| abstract_inverted_index.lf | 84 |
| abstract_inverted_index.of | 136, 178, 227 |
| abstract_inverted_index.on | 5, 217 |
| abstract_inverted_index.or | 71 |
| abstract_inverted_index.to | 15, 37, 41, 77, 107, 123, 173, 187, 209 |
| abstract_inverted_index.we | 3, 85, 116, 142 |
| abstract_inverted_index.NCD | 221 |
| abstract_inverted_index.The | 35 |
| abstract_inverted_index.and | 50, 66, 128, 139, 152, 159, 199, 214, 219 |
| abstract_inverted_index.can | 20 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.key | 36 |
| abstract_inverted_index.may | 75 |
| abstract_inverted_index.new | 131 |
| abstract_inverted_index.our | 228 |
| abstract_inverted_index.the | 28, 43, 47, 58, 62, 78, 96, 99, 108, 125, 148, 153, 157, 175, 189, 193, 200, 225 |
| abstract_inverted_index.SCM. | 163 |
| abstract_inverted_index.base | 52, 65, 149, 158, 179, 194, 208 |
| abstract_inverted_index.end, | 115 |
| abstract_inverted_index.from | 30, 64, 207 |
| abstract_inverted_index.lead | 76 |
| abstract_inverted_index.only | 27 |
| abstract_inverted_index.task | 39 |
| abstract_inverted_index.that | 19, 104, 170 |
| abstract_inverted_index.then | 185 |
| abstract_inverted_index.this | 1, 38, 114 |
| abstract_inverted_index.upon | 95 |
| abstract_inverted_index.used | 186 |
| abstract_inverted_index.well | 56 |
| abstract_inverted_index.(SCM) | 122 |
| abstract_inverted_index.Class | 7 |
| abstract_inverted_index.Cloud | 11 |
| abstract_inverted_index.Joint | 134 |
| abstract_inverted_index.Novel | 6 |
| abstract_inverted_index.Point | 10 |
| abstract_inverted_index.class | 53, 82, 150, 202 |
| abstract_inverted_index.cloud | 102 |
| abstract_inverted_index.exact | 44 |
| abstract_inverted_index.first | 143 |
| abstract_inverted_index.focus | 4 |
| abstract_inverted_index.graph | 182 |
| abstract_inverted_index.i.e., | 133 |
| abstract_inverted_index.learn | 16 |
| abstract_inverted_index.model | 18, 121, 188 |
| abstract_inverted_index.novel | 67, 81, 160, 201, 210 |
| abstract_inverted_index.point | 48, 101 |
| abstract_inverted_index.setup | 42 |
| abstract_inverted_index.their | 51 |
| abstract_inverted_index.using | 26 |
| abstract_inverted_index.(base) | 32 |
| abstract_inverted_index.3D-NCD | 126 |
| abstract_inverted_index.Causal | 137 |
| abstract_inverted_index.aiming | 14 |
| abstract_inverted_index.causal | 88, 120, 154, 167, 176, 190, 196, 205 |
| abstract_inverted_index.coarse | 70 |
| abstract_inverted_index.devise | 165 |
| abstract_inverted_index.hidden | 145 |
| abstract_inverted_index.impose | 86 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.points | 63 |
| abstract_inverted_index.should | 110 |
| abstract_inverted_index.strong | 92 |
| abstract_inverted_index.(novel) | 23 |
| abstract_inverted_index.analyze | 144 |
| abstract_inverted_index.between | 46, 61, 156, 192 |
| abstract_inverted_index.capture | 174 |
| abstract_inverted_index.classes | 25, 109, 161 |
| abstract_inverted_index.labeled | 31 |
| abstract_inverted_index.labels, | 54 |
| abstract_inverted_index.method, | 132 |
| abstract_inverted_index.method. | 229 |
| abstract_inverted_index.problem | 127 |
| abstract_inverted_index.propose | 129 |
| abstract_inverted_index.results | 216 |
| abstract_inverted_index.segment | 21 |
| abstract_inverted_index.through | 162 |
| abstract_inverted_index.Learning | 135 |
| abstract_inverted_index.classes' | 195 |
| abstract_inverted_index.classes. | 34, 68, 180, 211 |
| abstract_inverted_index.enabling | 204 |
| abstract_inverted_index.learning | 74, 97 |
| abstract_inverted_index.process, | 98 |
| abstract_inverted_index.semantic | 222 |
| abstract_inverted_index.(3D-NCD), | 13 |
| abstract_inverted_index.Discovery | 8 |
| abstract_inverted_index.Extensive | 212 |
| abstract_inverted_index.confusion | 79 |
| abstract_inverted_index.essential | 100 |
| abstract_inverted_index.introduce | 117 |
| abstract_inverted_index.prototype | 169 |
| abstract_inverted_index.reasoning | 206 |
| abstract_inverted_index.structure | 183 |
| abstract_inverted_index.unlabeled | 22 |
| abstract_inverted_index.Reasoning. | 140 |
| abstract_inverted_index.accurately | 105 |
| abstract_inverted_index.constraint | 94 |
| abstract_inverted_index.correlated | 93 |
| abstract_inverted_index.correspond | 106 |
| abstract_inverted_index.eliminates | 171 |
| abstract_inverted_index.inference. | 83 |
| abstract_inverted_index.prototypes | 198 |
| abstract_inverted_index.structural | 119 |
| abstract_inverted_index.uncovered. | 112 |
| abstract_inverted_index.confounders | 146, 172 |
| abstract_inverted_index.correlation | 73 |
| abstract_inverted_index.demonstrate | 224 |
| abstract_inverted_index.experiments | 213 |
| abstract_inverted_index.prototypes, | 203 |
| abstract_inverted_index.statistical | 72 |
| abstract_inverted_index.supervision | 29 |
| abstract_inverted_index.Segmentation | 12 |
| abstract_inverted_index.correlations | 45, 60 |
| abstract_inverted_index.re-formalize | 124 |
| abstract_inverted_index.relationship | 89 |
| abstract_inverted_index.segmentation | 223 |
| abstract_inverted_index.Specifically, | 141 |
| abstract_inverted_index.relationships | 155, 191 |
| abstract_inverted_index.superiorities | 226 |
| abstract_inverted_index.visualization | 215 |
| abstract_inverted_index.Representation | 138 |
| abstract_inverted_index.representation | 59, 168, 197 |
| abstract_inverted_index.representations | 49, 103, 151, 177 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |