Novel Fine-Tuned Attribute Weighted Naïve Bayes NLoS Classifier for UWB Positioning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/lcomm.2023.3249834
In this letter, we propose a novel Fine-Tuned attribute Weighted Naïve Bayes (FT-WNB) classifier to identify the Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) for UltraWide Bandwidth (UWB) signals in an Indoor Positioning System (IPS). The FT-WNB classifier assigns each signal feature a specific weight and fine-tunes its probabilities to address the mismatch between the predicted and actual class. The performance of the FT-WNB classifier is compared with the state-of-the-art Machine Learning (ML) classifiers such as minimum Redundancy Maximum Relevance (mRMR)- k -Nearest Neighbour (KNN), Support Vector Machine (SVM), Decision Tree (DT), Naïve Bayes (NB), and Neural Network (NN). It is demonstrated that the proposed classifier outperforms other algorithms by achieving a high NLoS classification accuracy of 99.7% with imbalanced data and 99.8% with balanced data. The experimental results indicate that our proposed FT-WNB classifier significantly outperforms the existing state-of-the-art ML methods for LoS and NLoS signals in IPS in the considered scenario.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/lcomm.2023.3249834
- OA Status
- green
- Cited By
- 12
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4322576437
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4322576437Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/lcomm.2023.3249834Digital Object Identifier
- Title
-
Novel Fine-Tuned Attribute Weighted Naïve Bayes NLoS Classifier for UWB PositioningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-27Full publication date if available
- Authors
-
Fuhu Che, Qasim Zeeshan Ahmed, Fahd Ahmed Khan, Faheem A. KhanList of authors in order
- Landing page
-
https://doi.org/10.1109/lcomm.2023.3249834Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pure.hud.ac.uk/en/publications/d827bec3-eba4-4841-ba66-da4f53e542afDirect OA link when available
- Concepts
-
Naive Bayes classifier, Non-line-of-sight propagation, Artificial intelligence, Computer science, Classifier (UML), Support vector machine, Artificial neural network, Pattern recognition (psychology), Machine learning, Bayes' theorem, Quadratic classifier, Bayesian probability, Wireless, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 6, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4322576437 |
|---|---|
| doi | https://doi.org/10.1109/lcomm.2023.3249834 |
| ids.doi | https://doi.org/10.1109/lcomm.2023.3249834 |
| ids.openalex | https://openalex.org/W4322576437 |
| fwci | 1.99060678 |
| type | article |
| title | Novel Fine-Tuned Attribute Weighted Naïve Bayes NLoS Classifier for UWB Positioning |
| biblio.issue | 4 |
| biblio.volume | 27 |
| biblio.last_page | 1134 |
| biblio.first_page | 1130 |
| topics[0].id | https://openalex.org/T10326 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Indoor and Outdoor Localization Technologies |
| topics[1].id | https://openalex.org/T12146 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9914000034332275 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Power Line Communications and Noise |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9887999892234802 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C52001869 |
| concepts[0].level | 3 |
| concepts[0].score | 0.729572057723999 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q812530 |
| concepts[0].display_name | Naive Bayes classifier |
| concepts[1].id | https://openalex.org/C154910267 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7277435064315796 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1740982 |
| concepts[1].display_name | Non-line-of-sight propagation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7110381722450256 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6811650991439819 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C95623464 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6713525056838989 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[4].display_name | Classifier (UML) |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5527005195617676 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5295150279998779 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49625879526138306 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4940636456012726 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C207201462 |
| concepts[9].level | 3 |
| concepts[9].score | 0.44597721099853516 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q182505 |
| concepts[9].display_name | Bayes' theorem |
| concepts[10].id | https://openalex.org/C52620605 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4175351560115814 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7268357 |
| concepts[10].display_name | Quadratic classifier |
| concepts[11].id | https://openalex.org/C107673813 |
| concepts[11].level | 2 |
| concepts[11].score | 0.20080551505088806 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[11].display_name | Bayesian probability |
| concepts[12].id | https://openalex.org/C555944384 |
| concepts[12].level | 2 |
| concepts[12].score | 0.14622563123703003 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[12].display_name | Wireless |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/naive-bayes-classifier |
| keywords[0].score | 0.729572057723999 |
| keywords[0].display_name | Naive Bayes classifier |
| keywords[1].id | https://openalex.org/keywords/non-line-of-sight-propagation |
| keywords[1].score | 0.7277435064315796 |
| keywords[1].display_name | Non-line-of-sight propagation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7110381722450256 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6811650991439819 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/classifier |
| keywords[4].score | 0.6713525056838989 |
| keywords[4].display_name | Classifier (UML) |
| keywords[5].id | https://openalex.org/keywords/support-vector-machine |
| keywords[5].score | 0.5527005195617676 |
| keywords[5].display_name | Support vector machine |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5295150279998779 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.49625879526138306 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4940636456012726 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/bayes-theorem |
| keywords[9].score | 0.44597721099853516 |
| keywords[9].display_name | Bayes' theorem |
| keywords[10].id | https://openalex.org/keywords/quadratic-classifier |
| keywords[10].score | 0.4175351560115814 |
| keywords[10].display_name | Quadratic classifier |
| keywords[11].id | https://openalex.org/keywords/bayesian-probability |
| keywords[11].score | 0.20080551505088806 |
| keywords[11].display_name | Bayesian probability |
| keywords[12].id | https://openalex.org/keywords/wireless |
| keywords[12].score | 0.14622563123703003 |
| keywords[12].display_name | Wireless |
| language | en |
| locations[0].id | doi:10.1109/lcomm.2023.3249834 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S147316732 |
| locations[0].source.issn | 1089-7798, 1558-2558, 2373-7891 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1089-7798 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Communications Letters |
| locations[0].source.host_organization | https://openalex.org/P4310316002 |
| locations[0].source.host_organization_name | IEEE Communications Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310316002, https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | IEEE Communications Society, Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Communications Letters |
| locations[0].landing_page_url | https://doi.org/10.1109/lcomm.2023.3249834 |
| locations[1].id | pmh:oai:pure.atira.dk:publications/d827bec3-eba4-4841-ba66-da4f53e542af |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400216 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Research Portal (King's College London) |
| locations[1].source.host_organization | https://openalex.org/I183935753 |
| locations[1].source.host_organization_name | King's College London |
| locations[1].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Che , F , Ahmed , Q , Khan , F A & Khan , F 2023 , ' Novel Fine-Tuned Attribute Weighted Naïve Bayes NLoS Classifier for UWB Positioning ' , IEEE Communications Letters , vol. 27 , no. 4 , 10054400 , pp. 1130-1134 . https://doi.org/10.1109/LCOMM.2023.3249834 |
| locations[1].landing_page_url | https://pure.hud.ac.uk/en/publications/d827bec3-eba4-4841-ba66-da4f53e542af |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090763715 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Fuhu Che |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I133837150 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computing and Engineering, University of Huddersfield, Huddersfield, U.K |
| authorships[0].institutions[0].id | https://openalex.org/I133837150 |
| authorships[0].institutions[0].ror | https://ror.org/05t1h8f27 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I133837150 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Huddersfield |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fuhu Che |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computing and Engineering, University of Huddersfield, Huddersfield, U.K |
| authorships[1].author.id | https://openalex.org/A5017766812 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3957-5341 |
| authorships[1].author.display_name | Qasim Zeeshan Ahmed |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I133837150 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computing and Engineering, University of Huddersfield, Huddersfield, U.K |
| authorships[1].institutions[0].id | https://openalex.org/I133837150 |
| authorships[1].institutions[0].ror | https://ror.org/05t1h8f27 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I133837150 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Huddersfield |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qasim Zeeshan Ahmed |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computing and Engineering, University of Huddersfield, Huddersfield, U.K |
| authorships[2].author.id | https://openalex.org/A5072201944 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3920-7562 |
| authorships[2].author.display_name | Fahd Ahmed Khan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I8692664, https://openalex.org/I87208437 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical and Computer Engineering, The University of Oklahoma, Tulsa, OK, USA |
| authorships[2].institutions[0].id | https://openalex.org/I8692664 |
| authorships[2].institutions[0].ror | https://ror.org/02aqsxs83 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I8692664 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Oklahoma |
| authorships[2].institutions[1].id | https://openalex.org/I87208437 |
| authorships[2].institutions[1].ror | https://ror.org/04wn28048 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I87208437 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | University of Tulsa |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fahd Ahmed Khan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical and Computer Engineering, The University of Oklahoma, Tulsa, OK, USA |
| authorships[3].author.id | https://openalex.org/A5065790904 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7491-8776 |
| authorships[3].author.display_name | Faheem A. Khan |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I133837150 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computing and Engineering, University of Huddersfield, Huddersfield, U.K |
| authorships[3].institutions[0].id | https://openalex.org/I133837150 |
| authorships[3].institutions[0].ror | https://ror.org/05t1h8f27 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I133837150 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Huddersfield |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Faheem A. Khan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computing and Engineering, University of Huddersfield, Huddersfield, U.K |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pure.hud.ac.uk/en/publications/d827bec3-eba4-4841-ba66-da4f53e542af |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Novel Fine-Tuned Attribute Weighted Naïve Bayes NLoS Classifier for UWB Positioning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10326 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Indoor and Outdoor Localization Technologies |
| related_works | https://openalex.org/W4288315282, https://openalex.org/W2951122819, https://openalex.org/W2162083125, https://openalex.org/W2537862391, https://openalex.org/W2096969571, https://openalex.org/W2417174640, https://openalex.org/W2800999593, https://openalex.org/W2147234107, https://openalex.org/W2112112609, https://openalex.org/W2009506202 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:pure.atira.dk:publications/d827bec3-eba4-4841-ba66-da4f53e542af |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400216 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Portal (King's College London) |
| best_oa_location.source.host_organization | https://openalex.org/I183935753 |
| best_oa_location.source.host_organization_name | King's College London |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I183935753 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Che , F , Ahmed , Q , Khan , F A & Khan , F 2023 , ' Novel Fine-Tuned Attribute Weighted Naïve Bayes NLoS Classifier for UWB Positioning ' , IEEE Communications Letters , vol. 27 , no. 4 , 10054400 , pp. 1130-1134 . https://doi.org/10.1109/LCOMM.2023.3249834 |
| best_oa_location.landing_page_url | https://pure.hud.ac.uk/en/publications/d827bec3-eba4-4841-ba66-da4f53e542af |
| primary_location.id | doi:10.1109/lcomm.2023.3249834 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S147316732 |
| primary_location.source.issn | 1089-7798, 1558-2558, 2373-7891 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1089-7798 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Communications Letters |
| primary_location.source.host_organization | https://openalex.org/P4310316002 |
| primary_location.source.host_organization_name | IEEE Communications Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310316002, https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | IEEE Communications Society, Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Communications Letters |
| primary_location.landing_page_url | https://doi.org/10.1109/lcomm.2023.3249834 |
| publication_date | 2023-02-27 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3111425395, https://openalex.org/W2966035132, https://openalex.org/W3001043111, https://openalex.org/W2996735343, https://openalex.org/W2922240662, https://openalex.org/W3023622710, https://openalex.org/W4206997880, https://openalex.org/W2964029185, https://openalex.org/W4292972351, https://openalex.org/W3134499048, https://openalex.org/W3033032209, https://openalex.org/W3118145897, https://openalex.org/W3192862439, https://openalex.org/W4293704597, https://openalex.org/W2075744751, https://openalex.org/W3126771108, https://openalex.org/W4312268162 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 5, 40, 109 |
| abstract_inverted_index.k | 79 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.It | 97 |
| abstract_inverted_index.ML | 138 |
| abstract_inverted_index.an | 28 |
| abstract_inverted_index.as | 73 |
| abstract_inverted_index.by | 107 |
| abstract_inverted_index.in | 27, 145, 147 |
| abstract_inverted_index.is | 63, 98 |
| abstract_inverted_index.of | 59, 114 |
| abstract_inverted_index.to | 14, 47 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.IPS | 146 |
| abstract_inverted_index.LoS | 141 |
| abstract_inverted_index.The | 33, 57, 124 |
| abstract_inverted_index.and | 19, 43, 54, 93, 119, 142 |
| abstract_inverted_index.for | 22, 140 |
| abstract_inverted_index.its | 45 |
| abstract_inverted_index.our | 129 |
| abstract_inverted_index.the | 16, 49, 52, 60, 66, 101, 135, 148 |
| abstract_inverted_index.(ML) | 70 |
| abstract_inverted_index.NLoS | 111, 143 |
| abstract_inverted_index.Tree | 88 |
| abstract_inverted_index.data | 118 |
| abstract_inverted_index.each | 37 |
| abstract_inverted_index.high | 110 |
| abstract_inverted_index.such | 72 |
| abstract_inverted_index.that | 100, 128 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.with | 65, 116, 121 |
| abstract_inverted_index.(DT), | 89 |
| abstract_inverted_index.(LoS) | 18 |
| abstract_inverted_index.(NB), | 92 |
| abstract_inverted_index.(NN). | 96 |
| abstract_inverted_index.(UWB) | 25 |
| abstract_inverted_index.99.7% | 115 |
| abstract_inverted_index.99.8% | 120 |
| abstract_inverted_index.Bayes | 11, 91 |
| abstract_inverted_index.data. | 123 |
| abstract_inverted_index.novel | 6 |
| abstract_inverted_index.other | 105 |
| abstract_inverted_index.(IPS). | 32 |
| abstract_inverted_index.(KNN), | 82 |
| abstract_inverted_index.(NLoS) | 21 |
| abstract_inverted_index.(SVM), | 86 |
| abstract_inverted_index.FT-WNB | 34, 61, 131 |
| abstract_inverted_index.Indoor | 29 |
| abstract_inverted_index.Naïve | 10, 90 |
| abstract_inverted_index.Neural | 94 |
| abstract_inverted_index.System | 31 |
| abstract_inverted_index.Vector | 84 |
| abstract_inverted_index.actual | 55 |
| abstract_inverted_index.class. | 56 |
| abstract_inverted_index.signal | 38 |
| abstract_inverted_index.weight | 42 |
| abstract_inverted_index.(mRMR)- | 78 |
| abstract_inverted_index.Machine | 68, 85 |
| abstract_inverted_index.Maximum | 76 |
| abstract_inverted_index.Network | 95 |
| abstract_inverted_index.Support | 83 |
| abstract_inverted_index.address | 48 |
| abstract_inverted_index.assigns | 36 |
| abstract_inverted_index.between | 51 |
| abstract_inverted_index.feature | 39 |
| abstract_inverted_index.letter, | 2 |
| abstract_inverted_index.methods | 139 |
| abstract_inverted_index.minimum | 74 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.signals | 26, 144 |
| abstract_inverted_index.(FT-WNB) | 12 |
| abstract_inverted_index.-Nearest | 80 |
| abstract_inverted_index.Decision | 87 |
| abstract_inverted_index.Learning | 69 |
| abstract_inverted_index.Weighted | 9 |
| abstract_inverted_index.accuracy | 113 |
| abstract_inverted_index.balanced | 122 |
| abstract_inverted_index.compared | 64 |
| abstract_inverted_index.existing | 136 |
| abstract_inverted_index.identify | 15 |
| abstract_inverted_index.indicate | 127 |
| abstract_inverted_index.mismatch | 50 |
| abstract_inverted_index.proposed | 102, 130 |
| abstract_inverted_index.specific | 41 |
| abstract_inverted_index.Bandwidth | 24 |
| abstract_inverted_index.Neighbour | 81 |
| abstract_inverted_index.Relevance | 77 |
| abstract_inverted_index.UltraWide | 23 |
| abstract_inverted_index.achieving | 108 |
| abstract_inverted_index.attribute | 8 |
| abstract_inverted_index.predicted | 53 |
| abstract_inverted_index.scenario. | 150 |
| abstract_inverted_index.Fine-Tuned | 7 |
| abstract_inverted_index.Redundancy | 75 |
| abstract_inverted_index.algorithms | 106 |
| abstract_inverted_index.classifier | 13, 35, 62, 103, 132 |
| abstract_inverted_index.considered | 149 |
| abstract_inverted_index.fine-tunes | 44 |
| abstract_inverted_index.imbalanced | 117 |
| abstract_inverted_index.Positioning | 30 |
| abstract_inverted_index.classifiers | 71 |
| abstract_inverted_index.outperforms | 104, 134 |
| abstract_inverted_index.performance | 58 |
| abstract_inverted_index.demonstrated | 99 |
| abstract_inverted_index.experimental | 125 |
| abstract_inverted_index.Line-of-Sight | 17 |
| abstract_inverted_index.probabilities | 46 |
| abstract_inverted_index.significantly | 133 |
| abstract_inverted_index.classification | 112 |
| abstract_inverted_index.state-of-the-art | 67, 137 |
| abstract_inverted_index.Non-Line-of-Sight | 20 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.85323554 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |