Novel segmentation method using a self-organizing neural network for spectral CT Article Swipe
Akio Yoneyama
,
Rie Baba
,
Mitsuru Kawamoto
,
Thida Lwin
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.26044/ecr2020/c-08185
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.26044/ecr2020/c-08185
Poster: ECR 2020 / C-08185 / Novel segmentation method using a self-organizing neural network for spectral CT by: A. Yoneyama 1, R. Baba2, M. Kawamoto3, T.-T. Lwin4; 1Tosu, Saga/JP, 2Tokyo/JP, 3Tosu/JP, 4Sagamihara/JP
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26044/ecr2020/c-08185
- OA Status
- green
- Cited By
- 1
- OpenAlex ID
- https://openalex.org/W3106378565
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3106378565Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26044/ecr2020/c-08185Digital Object Identifier
- Title
-
Novel segmentation method using a self-organizing neural network for spectral CTWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-13Full publication date if available
- Authors
-
Akio Yoneyama, Rie Baba, Mitsuru Kawamoto, Thida LwinList of authors in order
- Landing page
-
https://doi.org/10.26044/ecr2020/c-08185Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.26044/ecr2020/c-08185Direct OA link when available
- Concepts
-
Segmentation, Artificial intelligence, Artificial neural network, Computer science, Pattern recognition (psychology), Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
Full payload
| id | https://openalex.org/W3106378565 |
|---|---|
| doi | https://doi.org/10.26044/ecr2020/c-08185 |
| ids.doi | https://doi.org/10.26044/ecr2020/c-08185 |
| ids.mag | 3106378565 |
| ids.openalex | https://openalex.org/W3106378565 |
| fwci | 0.09395779 |
| type | article |
| title | Novel segmentation method using a self-organizing neural network for spectral CT |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12386 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced X-ray and CT Imaging |
| topics[1].id | https://openalex.org/T10522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Medical Imaging Techniques and Applications |
| topics[2].id | https://openalex.org/T11778 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9783999919891357 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electrical and Bioimpedance Tomography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7060425877571106 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5811206102371216 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5340164303779602 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48698219656944275 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4505862593650818 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3498552441596985 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7060425877571106 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5811206102371216 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5340164303779602 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.48698219656944275 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.4505862593650818 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.3498552441596985 |
| keywords[5].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.26044/ecr2020/c-08185 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S7407052185 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | European Society of Radiology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.26044/ecr2020/c-08185 |
| locations[1].id | mag:3106378565 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://epos.myesr.org/poster/esr/ecr2020/C-08185 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5064684895 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6925-6723 |
| authorships[0].author.display_name | Akio Yoneyama |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | A. Yoneyama |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049409879 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8255-1978 |
| authorships[1].author.display_name | Rie Baba |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | R. Baba |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5003284969 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0562-3851 |
| authorships[2].author.display_name | Mitsuru Kawamoto |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | M. Kawamoto |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070208564 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Thida Lwin |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | T.-T. Lwin |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.26044/ecr2020/c-08185 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Novel segmentation method using a self-organizing neural network for spectral CT |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12386 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced X-ray and CT Imaging |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.26044/ecr2020/c-08185 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407052185 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | European Society of Radiology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.26044/ecr2020/c-08185 |
| primary_location.id | doi:10.26044/ecr2020/c-08185 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S7407052185 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | European Society of Radiology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.26044/ecr2020/c-08185 |
| publication_date | 2020-01-13 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index. | 19, 21 |
| abstract_inverted_index./ | 4, 6 |
| abstract_inverted_index.a | 11 |
| abstract_inverted_index.1, | 25 |
| abstract_inverted_index.A. | 22 |
| abstract_inverted_index.CT | 18 |
| abstract_inverted_index.M. | 29 |
| abstract_inverted_index.R. | 26 |
| abstract_inverted_index.ECR | 1 |
| abstract_inverted_index.by: | 20 |
| abstract_inverted_index.for | 16 |
| abstract_inverted_index.2020 | 2 |
| abstract_inverted_index.Novel | 7 |
| abstract_inverted_index.T.-T. | 32 |
| abstract_inverted_index.using | 10 |
| abstract_inverted_index.1Tosu, | 35 |
| abstract_inverted_index.Baba2, | 28 |
| abstract_inverted_index.Lwin4; | 34 |
| abstract_inverted_index.method | 9 |
| abstract_inverted_index.neural | 13 |
| abstract_inverted_index.C-08185 | 5 |
| abstract_inverted_index.Poster: | 0 |
| abstract_inverted_index.network | 14 |
| abstract_inverted_index.Saga/JP, | 36 |
| abstract_inverted_index.Yoneyama | 24 |
| abstract_inverted_index.spectral | 17 |
| abstract_inverted_index.3Tosu/JP, | 38 |
| abstract_inverted_index.2Tokyo/JP, | 37 |
| abstract_inverted_index.Kawamoto3, | 31 |
| abstract_inverted_index.segmentation | 8 |
| abstract_inverted_index.4Sagamihara/JP | 39 |
| abstract_inverted_index.self-organizing | 12 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.41690389 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |