Numerical modeling of the upper and lower major temporal arcade in fundus images using genetic algorithms Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-5040985/v1
In this paper, a new numerical modeling methodology is presented for the thickest vein in the retina, the major temporal arcade, since previous studies have shown that modifications in its opening, tortuosity and even thickness are indicative that the patient suffers from a type of retinopathy, which if not treated promptly, can lead to irreversible blindness. A model for the arcade vein is analyzed by spline functions, where a genetic algorithm was applied to determine the control points. Subsequently, once the model was determined, the equations of the cubic tracers were used to estimate the opening angle of the arcade. The results obtained were compared using two measures, the mean distance to the closest point and the Hausdorff distance. Although the UMDA+SA method remains the fastest, the proposed method is only 0.39 seconds below it, however, its measurements are 27.81 and 68.39 (Mean Distance to the Closest Point and Hausdorff distance) pixels larger with respect to the new method. Different measurements for the opening angle were obtained for the set of images from the DRIVE database. The models of cubic splines and the opening angle have been obtained quickly and this type of functions are excellent since they are smooth functions and do not present abrupt oscillations in the fit.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-5040985/v1
- https://www.researchsquare.com/article/rs-5040985/latest.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403276863
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403276863Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-5040985/v1Digital Object Identifier
- Title
-
Numerical modeling of the upper and lower major temporal arcade in fundus images using genetic algorithmsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-09Full publication date if available
- Authors
-
José Alfredo Soto Álvarez, Luis Alberto Torres Luna, Teodoro Córdova‐Fraga, Iván Cruz AcevesList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-5040985/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-5040985/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-5040985/latest.pdfDirect OA link when available
- Concepts
-
Computer science, Fundus (uterus), Algorithm, Artificial intelligence, Computer vision, Ophthalmology, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403276863 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-5040985/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-5040985/v1 |
| ids.openalex | https://openalex.org/W4403276863 |
| fwci | 0.0 |
| type | preprint |
| title | Numerical modeling of the upper and lower major temporal arcade in fundus images using genetic algorithms |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11438 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Retinal Imaging and Analysis |
| topics[1].id | https://openalex.org/T10250 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.979200005531311 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2731 |
| topics[1].subfield.display_name | Ophthalmology |
| topics[1].display_name | Glaucoma and retinal disorders |
| topics[2].id | https://openalex.org/T12599 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9409999847412109 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2731 |
| topics[2].subfield.display_name | Ophthalmology |
| topics[2].display_name | Retinal and Optic Conditions |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.582186222076416 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776391266 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5487542748451233 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q9612 |
| concepts[1].display_name | Fundus (uterus) |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.44539833068847656 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4076758027076721 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3290189802646637 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C118487528 |
| concepts[5].level | 1 |
| concepts[5].score | 0.07997781038284302 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q161437 |
| concepts[5].display_name | Ophthalmology |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.05796822905540466 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.582186222076416 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/fundus |
| keywords[1].score | 0.5487542748451233 |
| keywords[1].display_name | Fundus (uterus) |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.44539833068847656 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4076758027076721 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.3290189802646637 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/ophthalmology |
| keywords[5].score | 0.07997781038284302 |
| keywords[5].display_name | Ophthalmology |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.05796822905540466 |
| keywords[6].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-5040985/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-5040985/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-5040985/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5064179073 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | José Alfredo Soto Álvarez |
| authorships[0].countries | MX |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I129858807 |
| authorships[0].affiliations[0].raw_affiliation_string | Universidad de Guanajuato |
| authorships[0].institutions[0].id | https://openalex.org/I129858807 |
| authorships[0].institutions[0].ror | https://ror.org/058cjye32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I129858807 |
| authorships[0].institutions[0].country_code | MX |
| authorships[0].institutions[0].display_name | Universidad de Guanajuato |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | José Alfredo Soto Álvarez |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Universidad de Guanajuato |
| authorships[1].author.id | https://openalex.org/A5113426331 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Luis Alberto Torres Luna |
| authorships[1].countries | MX |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I129858807 |
| authorships[1].affiliations[0].raw_affiliation_string | Universidad de Guanajuato |
| authorships[1].institutions[0].id | https://openalex.org/I129858807 |
| authorships[1].institutions[0].ror | https://ror.org/058cjye32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I129858807 |
| authorships[1].institutions[0].country_code | MX |
| authorships[1].institutions[0].display_name | Universidad de Guanajuato |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luis Alberto Torres Luna |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universidad de Guanajuato |
| authorships[2].author.id | https://openalex.org/A5016367516 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6486-7530 |
| authorships[2].author.display_name | Teodoro Córdova‐Fraga |
| authorships[2].countries | MX |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129858807 |
| authorships[2].affiliations[0].raw_affiliation_string | Universidad de Guanajuato |
| authorships[2].institutions[0].id | https://openalex.org/I129858807 |
| authorships[2].institutions[0].ror | https://ror.org/058cjye32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129858807 |
| authorships[2].institutions[0].country_code | MX |
| authorships[2].institutions[0].display_name | Universidad de Guanajuato |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Teodoro Córdova Fraga |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Universidad de Guanajuato |
| authorships[3].author.id | https://openalex.org/A5073847517 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Iván Cruz Aceves |
| authorships[3].countries | MX |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I124618812 |
| authorships[3].affiliations[0].raw_affiliation_string | Mathematics Research Center |
| authorships[3].institutions[0].id | https://openalex.org/I124618812 |
| authorships[3].institutions[0].ror | https://ror.org/02nhmp827 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I124618812 |
| authorships[3].institutions[0].country_code | MX |
| authorships[3].institutions[0].display_name | Mathematics Research Center |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Iván Cruz Aceves |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Mathematics Research Center |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-5040985/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Numerical modeling of the upper and lower major temporal arcade in fundus images using genetic algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11438 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Retinal Imaging and Analysis |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2772917594, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398, https://openalex.org/W2775347418 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-5040985/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-5040985/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-5040985/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-5040985/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-5040985/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-5040985/v1 |
| publication_date | 2024-10-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 57 |
| abstract_inverted_index.a | 4, 43, 69 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.by | 65 |
| abstract_inverted_index.do | 203 |
| abstract_inverted_index.if | 48 |
| abstract_inverted_index.in | 15, 29, 208 |
| abstract_inverted_index.is | 9, 63, 130 |
| abstract_inverted_index.of | 45, 87, 98, 171, 179, 193 |
| abstract_inverted_index.to | 54, 74, 93, 112, 145, 156 |
| abstract_inverted_index.The | 101, 177 |
| abstract_inverted_index.and | 33, 116, 141, 149, 182, 190, 202 |
| abstract_inverted_index.are | 36, 139, 195, 199 |
| abstract_inverted_index.can | 52 |
| abstract_inverted_index.for | 11, 59, 162, 168 |
| abstract_inverted_index.it, | 135 |
| abstract_inverted_index.its | 30, 137 |
| abstract_inverted_index.new | 5, 158 |
| abstract_inverted_index.not | 49, 204 |
| abstract_inverted_index.set | 170 |
| abstract_inverted_index.the | 12, 16, 18, 39, 60, 76, 81, 85, 88, 95, 99, 109, 113, 117, 121, 125, 127, 146, 157, 163, 169, 174, 183, 209 |
| abstract_inverted_index.two | 107 |
| abstract_inverted_index.was | 72, 83 |
| abstract_inverted_index.0.39 | 132 |
| abstract_inverted_index.been | 187 |
| abstract_inverted_index.even | 34 |
| abstract_inverted_index.fit. | 210 |
| abstract_inverted_index.from | 42, 173 |
| abstract_inverted_index.have | 25, 186 |
| abstract_inverted_index.lead | 53 |
| abstract_inverted_index.mean | 110 |
| abstract_inverted_index.once | 80 |
| abstract_inverted_index.only | 131 |
| abstract_inverted_index.that | 27, 38 |
| abstract_inverted_index.they | 198 |
| abstract_inverted_index.this | 2, 191 |
| abstract_inverted_index.type | 44, 192 |
| abstract_inverted_index.used | 92 |
| abstract_inverted_index.vein | 14, 62 |
| abstract_inverted_index.were | 91, 104, 166 |
| abstract_inverted_index.with | 154 |
| abstract_inverted_index.(Mean | 143 |
| abstract_inverted_index.27.81 | 140 |
| abstract_inverted_index.68.39 | 142 |
| abstract_inverted_index.DRIVE | 175 |
| abstract_inverted_index.Point | 148 |
| abstract_inverted_index.angle | 97, 165, 185 |
| abstract_inverted_index.below | 134 |
| abstract_inverted_index.cubic | 89, 180 |
| abstract_inverted_index.major | 19 |
| abstract_inverted_index.model | 58, 82 |
| abstract_inverted_index.point | 115 |
| abstract_inverted_index.shown | 26 |
| abstract_inverted_index.since | 22, 197 |
| abstract_inverted_index.using | 106 |
| abstract_inverted_index.where | 68 |
| abstract_inverted_index.which | 47 |
| abstract_inverted_index.abrupt | 206 |
| abstract_inverted_index.arcade | 61 |
| abstract_inverted_index.images | 172 |
| abstract_inverted_index.larger | 153 |
| abstract_inverted_index.method | 123, 129 |
| abstract_inverted_index.models | 178 |
| abstract_inverted_index.paper, | 3 |
| abstract_inverted_index.pixels | 152 |
| abstract_inverted_index.smooth | 200 |
| abstract_inverted_index.spline | 66 |
| abstract_inverted_index.Closest | 147 |
| abstract_inverted_index.UMDA+SA | 122 |
| abstract_inverted_index.applied | 73 |
| abstract_inverted_index.arcade, | 21 |
| abstract_inverted_index.arcade. | 100 |
| abstract_inverted_index.closest | 114 |
| abstract_inverted_index.control | 77 |
| abstract_inverted_index.genetic | 70 |
| abstract_inverted_index.method. | 159 |
| abstract_inverted_index.opening | 96, 164, 184 |
| abstract_inverted_index.patient | 40 |
| abstract_inverted_index.points. | 78 |
| abstract_inverted_index.present | 205 |
| abstract_inverted_index.quickly | 189 |
| abstract_inverted_index.remains | 124 |
| abstract_inverted_index.respect | 155 |
| abstract_inverted_index.results | 102 |
| abstract_inverted_index.retina, | 17 |
| abstract_inverted_index.seconds | 133 |
| abstract_inverted_index.splines | 181 |
| abstract_inverted_index.studies | 24 |
| abstract_inverted_index.suffers | 41 |
| abstract_inverted_index.tracers | 90 |
| abstract_inverted_index.treated | 50 |
| abstract_inverted_index.Although | 120 |
| abstract_inverted_index.Distance | 144 |
| abstract_inverted_index.analyzed | 64 |
| abstract_inverted_index.compared | 105 |
| abstract_inverted_index.distance | 111 |
| abstract_inverted_index.estimate | 94 |
| abstract_inverted_index.fastest, | 126 |
| abstract_inverted_index.however, | 136 |
| abstract_inverted_index.modeling | 7 |
| abstract_inverted_index.obtained | 103, 167, 188 |
| abstract_inverted_index.opening, | 31 |
| abstract_inverted_index.previous | 23 |
| abstract_inverted_index.proposed | 128 |
| abstract_inverted_index.temporal | 20 |
| abstract_inverted_index.thickest | 13 |
| abstract_inverted_index.Different | 160 |
| abstract_inverted_index.Hausdorff | 118, 150 |
| abstract_inverted_index.algorithm | 71 |
| abstract_inverted_index.database. | 176 |
| abstract_inverted_index.determine | 75 |
| abstract_inverted_index.distance) | 151 |
| abstract_inverted_index.distance. | 119 |
| abstract_inverted_index.equations | 86 |
| abstract_inverted_index.excellent | 196 |
| abstract_inverted_index.functions | 194, 201 |
| abstract_inverted_index.measures, | 108 |
| abstract_inverted_index.numerical | 6 |
| abstract_inverted_index.presented | 10 |
| abstract_inverted_index.promptly, | 51 |
| abstract_inverted_index.thickness | 35 |
| abstract_inverted_index.blindness. | 56 |
| abstract_inverted_index.functions, | 67 |
| abstract_inverted_index.indicative | 37 |
| abstract_inverted_index.tortuosity | 32 |
| abstract_inverted_index.determined, | 84 |
| abstract_inverted_index.methodology | 8 |
| abstract_inverted_index.irreversible | 55 |
| abstract_inverted_index.measurements | 138, 161 |
| abstract_inverted_index.oscillations | 207 |
| abstract_inverted_index.retinopathy, | 46 |
| abstract_inverted_index.Subsequently, | 79 |
| abstract_inverted_index.modifications | 28 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.32419128 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |