Numerical Weather Prediction Correction Strategy for Short-Term Wind Power Forecasting Based on Bidirectional Gated Recurrent Unit and XGBoost Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3389/fenrg.2021.836144
Accurate short-term wind power forecasting (WPF) plays a crucial role in grid scheduling and wind power accommodation. Numerical weather prediction (NWP) wind speed is the fundamental data for short-term WPF. At present, reducing NWP wind speed forecast errors contributes to improving the accuracy of WPF from the perspective of data quality. In this article, a variational mode decomposition combined with bidirectional gated recurrent unit (VMD-BGRU) method for NWP wind speed correction and XGBoost forecasting model are proposed. First, several NWP wind speed sub-series are divided by VMD to obtain more abundant multidimensional timing features. BGRU is applied to establish the potential relation between decomposed NWP wind speed sub-series and measured wind speed and get the proposed wind speed correction model. Then, a more clear regression forecasting model is trained based on XGBoost using historical measured wind speed and power. The corrected NWP wind speed is used to forecast wind power by XGBoost. Finally, the superiority of the proposed method is validated on a wind farm located in China. The results show that the proposed correction model and forecasting model outperform other compared models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fenrg.2021.836144
- https://www.frontiersin.org/articles/10.3389/fenrg.2021.836144/pdf
- OA Status
- gold
- Cited By
- 32
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4205282669
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4205282669Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fenrg.2021.836144Digital Object Identifier
- Title
-
Numerical Weather Prediction Correction Strategy for Short-Term Wind Power Forecasting Based on Bidirectional Gated Recurrent Unit and XGBoostWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-17Full publication date if available
- Authors
-
Yu Li, Fei Tang, Xin Gao, Tongyan Zhang, Junfeng Qi, Jiarui Xie, Xinang Li, Yuhan GuoList of authors in order
- Landing page
-
https://doi.org/10.3389/fenrg.2021.836144Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fenrg.2021.836144/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fenrg.2021.836144/pdfDirect OA link when available
- Concepts
-
Numerical weather prediction, Wind power forecasting, Wind speed, Meteorology, Wind power, Environmental science, Computer science, Electric power system, Power (physics), Geography, Engineering, Physics, Quantum mechanics, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
32Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 5, 2023: 16, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4205282669 |
|---|---|
| doi | https://doi.org/10.3389/fenrg.2021.836144 |
| ids.doi | https://doi.org/10.3389/fenrg.2021.836144 |
| ids.openalex | https://openalex.org/W4205282669 |
| fwci | 3.44469505 |
| type | article |
| title | Numerical Weather Prediction Correction Strategy for Short-Term Wind Power Forecasting Based on Bidirectional Gated Recurrent Unit and XGBoost |
| biblio.issue | |
| biblio.volume | 9 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T10424 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9927999973297119 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Electric Power System Optimization |
| topics[2].id | https://openalex.org/T10680 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9819999933242798 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Wind Energy Research and Development |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2490 |
| apc_list.currency | USD |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2490 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C147947694 |
| concepts[0].level | 2 |
| concepts[0].score | 0.846113383769989 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q837552 |
| concepts[0].display_name | Numerical weather prediction |
| concepts[1].id | https://openalex.org/C2781084341 |
| concepts[1].level | 4 |
| concepts[1].score | 0.7978993654251099 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2583670 |
| concepts[1].display_name | Wind power forecasting |
| concepts[2].id | https://openalex.org/C161067210 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7436271905899048 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1464943 |
| concepts[2].display_name | Wind speed |
| concepts[3].id | https://openalex.org/C153294291 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6870403289794922 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[3].display_name | Meteorology |
| concepts[4].id | https://openalex.org/C78600449 |
| concepts[4].level | 2 |
| concepts[4].score | 0.603439211845398 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q43302 |
| concepts[4].display_name | Wind power |
| concepts[5].id | https://openalex.org/C39432304 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4015335738658905 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[5].display_name | Environmental science |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.39187857508659363 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C89227174 |
| concepts[7].level | 3 |
| concepts[7].score | 0.29727864265441895 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2388981 |
| concepts[7].display_name | Electric power system |
| concepts[8].id | https://openalex.org/C163258240 |
| concepts[8].level | 2 |
| concepts[8].score | 0.2817036509513855 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[8].display_name | Power (physics) |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16726303100585938 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.15340906381607056 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.056773483753204346 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/numerical-weather-prediction |
| keywords[0].score | 0.846113383769989 |
| keywords[0].display_name | Numerical weather prediction |
| keywords[1].id | https://openalex.org/keywords/wind-power-forecasting |
| keywords[1].score | 0.7978993654251099 |
| keywords[1].display_name | Wind power forecasting |
| keywords[2].id | https://openalex.org/keywords/wind-speed |
| keywords[2].score | 0.7436271905899048 |
| keywords[2].display_name | Wind speed |
| keywords[3].id | https://openalex.org/keywords/meteorology |
| keywords[3].score | 0.6870403289794922 |
| keywords[3].display_name | Meteorology |
| keywords[4].id | https://openalex.org/keywords/wind-power |
| keywords[4].score | 0.603439211845398 |
| keywords[4].display_name | Wind power |
| keywords[5].id | https://openalex.org/keywords/environmental-science |
| keywords[5].score | 0.4015335738658905 |
| keywords[5].display_name | Environmental science |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.39187857508659363 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/electric-power-system |
| keywords[7].score | 0.29727864265441895 |
| keywords[7].display_name | Electric power system |
| keywords[8].id | https://openalex.org/keywords/power |
| keywords[8].score | 0.2817036509513855 |
| keywords[8].display_name | Power (physics) |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.16726303100585938 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.15340906381607056 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.056773483753204346 |
| keywords[11].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3389/fenrg.2021.836144 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2595193159 |
| locations[0].source.issn | 2296-598X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-598X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Energy Research |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fenrg.2021.836144/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Energy Research |
| locations[0].landing_page_url | https://doi.org/10.3389/fenrg.2021.836144 |
| locations[1].id | pmh:oai:doaj.org/article:009426f678ac46a6aa05aec10d6797e2 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Energy Research, Vol 9 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/009426f678ac46a6aa05aec10d6797e2 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100345597 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5144-6318 |
| authorships[0].author.display_name | Yu Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[0].institutions[0].id | https://openalex.org/I37461747 |
| authorships[0].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Wuhan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yu Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[1].author.id | https://openalex.org/A5076318988 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4668-4113 |
| authorships[1].author.display_name | Fei Tang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[1].institutions[0].id | https://openalex.org/I37461747 |
| authorships[1].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Wuhan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fei Tang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[2].author.id | https://openalex.org/A5063690063 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2755-0646 |
| authorships[2].author.display_name | Xin Gao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[2].institutions[0].id | https://openalex.org/I37461747 |
| authorships[2].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Wuhan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xin Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[3].author.id | https://openalex.org/A5041032500 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0300-0060 |
| authorships[3].author.display_name | Tongyan Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[3].institutions[0].id | https://openalex.org/I37461747 |
| authorships[3].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Wuhan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tongyan Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[4].author.id | https://openalex.org/A5102548015 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Junfeng Qi |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[4].institutions[0].id | https://openalex.org/I37461747 |
| authorships[4].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Wuhan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Junfeng Qi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[5].author.id | https://openalex.org/A5088972000 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6959-1089 |
| authorships[5].author.display_name | Jiarui Xie |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[5].institutions[0].id | https://openalex.org/I37461747 |
| authorships[5].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Wuhan University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jiarui Xie |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[6].author.id | https://openalex.org/A5081528857 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Xinang Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[6].institutions[0].id | https://openalex.org/I37461747 |
| authorships[6].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Wuhan University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xinang Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[7].author.id | https://openalex.org/A5015899741 |
| authorships[7].author.orcid | https://orcid.org/0009-0004-3857-7486 |
| authorships[7].author.display_name | Yuhan Guo |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| authorships[7].institutions[0].id | https://openalex.org/I37461747 |
| authorships[7].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Wuhan University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yuhan Guo |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Electrical Engineering and Automation, Wuhan University, Wuhan, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fenrg.2021.836144/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Numerical Weather Prediction Correction Strategy for Short-Term Wind Power Forecasting Based on Bidirectional Gated Recurrent Unit and XGBoost |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W4380482219, https://openalex.org/W4377969695, https://openalex.org/W2034182965, https://openalex.org/W2626641865, https://openalex.org/W2246158493, https://openalex.org/W4312678308, https://openalex.org/W4379528680, https://openalex.org/W2102851390, https://openalex.org/W2946066052, https://openalex.org/W2394338798 |
| cited_by_count | 32 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 16 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fenrg.2021.836144 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2595193159 |
| best_oa_location.source.issn | 2296-598X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-598X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Energy Research |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fenrg.2021.836144/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Energy Research |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fenrg.2021.836144 |
| primary_location.id | doi:10.3389/fenrg.2021.836144 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2595193159 |
| primary_location.source.issn | 2296-598X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-598X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Energy Research |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fenrg.2021.836144/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Energy Research |
| primary_location.landing_page_url | https://doi.org/10.3389/fenrg.2021.836144 |
| publication_date | 2022-01-17 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2017948442, https://openalex.org/W6785439672, https://openalex.org/W2586888681, https://openalex.org/W3011607776, https://openalex.org/W2757997884, https://openalex.org/W6658561926, https://openalex.org/W2607419240, https://openalex.org/W3081014946, https://openalex.org/W3133186580, https://openalex.org/W3033652527, https://openalex.org/W2000982976, https://openalex.org/W2426663208, https://openalex.org/W3047843361, https://openalex.org/W6760270736, https://openalex.org/W2944487131, https://openalex.org/W2783204403, https://openalex.org/W3148107757, https://openalex.org/W3117453207, https://openalex.org/W3004665554, https://openalex.org/W2469077086, https://openalex.org/W3174485517, https://openalex.org/W3187857512, https://openalex.org/W2579823431, https://openalex.org/W3047304847, https://openalex.org/W3035170123, https://openalex.org/W3132375333, https://openalex.org/W3187944083, https://openalex.org/W3112454149, https://openalex.org/W2790834859, https://openalex.org/W2893815961, https://openalex.org/W2908011737, https://openalex.org/W2981208062, https://openalex.org/W2960065449, https://openalex.org/W3165422522, https://openalex.org/W2778436178, https://openalex.org/W2796497513, https://openalex.org/W2935808211, https://openalex.org/W3113133745, https://openalex.org/W3197539572, https://openalex.org/W3206087127, https://openalex.org/W2789051809, https://openalex.org/W2970918707, https://openalex.org/W3082970222, https://openalex.org/W3204158561, https://openalex.org/W2606817745, https://openalex.org/W2949430164, https://openalex.org/W2964858381, https://openalex.org/W2605972243, https://openalex.org/W2967441216, https://openalex.org/W2923165391, https://openalex.org/W2032763141 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 7, 54, 121, 162 |
| abstract_inverted_index.At | 30 |
| abstract_inverted_index.In | 51 |
| abstract_inverted_index.by | 85, 150 |
| abstract_inverted_index.in | 10, 166 |
| abstract_inverted_index.is | 23, 95, 127, 144, 159 |
| abstract_inverted_index.of | 43, 48, 155 |
| abstract_inverted_index.on | 130, 161 |
| abstract_inverted_index.to | 39, 87, 97, 146 |
| abstract_inverted_index.NWP | 33, 67, 79, 104, 141 |
| abstract_inverted_index.The | 139, 168 |
| abstract_inverted_index.VMD | 86 |
| abstract_inverted_index.WPF | 44 |
| abstract_inverted_index.and | 13, 71, 108, 112, 137, 176 |
| abstract_inverted_index.are | 75, 83 |
| abstract_inverted_index.for | 27, 66 |
| abstract_inverted_index.get | 113 |
| abstract_inverted_index.the | 24, 41, 46, 99, 114, 153, 156, 172 |
| abstract_inverted_index.BGRU | 94 |
| abstract_inverted_index.WPF. | 29 |
| abstract_inverted_index.data | 26, 49 |
| abstract_inverted_index.farm | 164 |
| abstract_inverted_index.from | 45 |
| abstract_inverted_index.grid | 11 |
| abstract_inverted_index.mode | 56 |
| abstract_inverted_index.more | 89, 122 |
| abstract_inverted_index.role | 9 |
| abstract_inverted_index.show | 170 |
| abstract_inverted_index.that | 171 |
| abstract_inverted_index.this | 52 |
| abstract_inverted_index.unit | 63 |
| abstract_inverted_index.used | 145 |
| abstract_inverted_index.wind | 2, 14, 21, 34, 68, 80, 105, 110, 116, 135, 142, 148, 163 |
| abstract_inverted_index.with | 59 |
| abstract_inverted_index.(NWP) | 20 |
| abstract_inverted_index.(WPF) | 5 |
| abstract_inverted_index.Then, | 120 |
| abstract_inverted_index.based | 129 |
| abstract_inverted_index.clear | 123 |
| abstract_inverted_index.gated | 61 |
| abstract_inverted_index.model | 74, 126, 175, 178 |
| abstract_inverted_index.other | 180 |
| abstract_inverted_index.plays | 6 |
| abstract_inverted_index.power | 3, 15, 149 |
| abstract_inverted_index.speed | 22, 35, 69, 81, 106, 111, 117, 136, 143 |
| abstract_inverted_index.using | 132 |
| abstract_inverted_index.China. | 167 |
| abstract_inverted_index.First, | 77 |
| abstract_inverted_index.errors | 37 |
| abstract_inverted_index.method | 65, 158 |
| abstract_inverted_index.model. | 119 |
| abstract_inverted_index.obtain | 88 |
| abstract_inverted_index.power. | 138 |
| abstract_inverted_index.timing | 92 |
| abstract_inverted_index.XGBoost | 72, 131 |
| abstract_inverted_index.applied | 96 |
| abstract_inverted_index.between | 102 |
| abstract_inverted_index.crucial | 8 |
| abstract_inverted_index.divided | 84 |
| abstract_inverted_index.located | 165 |
| abstract_inverted_index.models. | 182 |
| abstract_inverted_index.results | 169 |
| abstract_inverted_index.several | 78 |
| abstract_inverted_index.trained | 128 |
| abstract_inverted_index.weather | 18 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Finally, | 152 |
| abstract_inverted_index.XGBoost. | 151 |
| abstract_inverted_index.abundant | 90 |
| abstract_inverted_index.accuracy | 42 |
| abstract_inverted_index.article, | 53 |
| abstract_inverted_index.combined | 58 |
| abstract_inverted_index.compared | 181 |
| abstract_inverted_index.forecast | 36, 147 |
| abstract_inverted_index.measured | 109, 134 |
| abstract_inverted_index.present, | 31 |
| abstract_inverted_index.proposed | 115, 157, 173 |
| abstract_inverted_index.quality. | 50 |
| abstract_inverted_index.reducing | 32 |
| abstract_inverted_index.relation | 101 |
| abstract_inverted_index.Numerical | 17 |
| abstract_inverted_index.corrected | 140 |
| abstract_inverted_index.establish | 98 |
| abstract_inverted_index.features. | 93 |
| abstract_inverted_index.improving | 40 |
| abstract_inverted_index.potential | 100 |
| abstract_inverted_index.proposed. | 76 |
| abstract_inverted_index.recurrent | 62 |
| abstract_inverted_index.validated | 160 |
| abstract_inverted_index.(VMD-BGRU) | 64 |
| abstract_inverted_index.correction | 70, 118, 174 |
| abstract_inverted_index.decomposed | 103 |
| abstract_inverted_index.historical | 133 |
| abstract_inverted_index.outperform | 179 |
| abstract_inverted_index.prediction | 19 |
| abstract_inverted_index.regression | 124 |
| abstract_inverted_index.scheduling | 12 |
| abstract_inverted_index.short-term | 1, 28 |
| abstract_inverted_index.sub-series | 82, 107 |
| abstract_inverted_index.contributes | 38 |
| abstract_inverted_index.forecasting | 4, 73, 125, 177 |
| abstract_inverted_index.fundamental | 25 |
| abstract_inverted_index.perspective | 47 |
| abstract_inverted_index.superiority | 154 |
| abstract_inverted_index.variational | 55 |
| abstract_inverted_index.bidirectional | 60 |
| abstract_inverted_index.decomposition | 57 |
| abstract_inverted_index.accommodation. | 16 |
| abstract_inverted_index.multidimensional | 91 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9100000262260437 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.92130222 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |