Nursing students’ learning strategies for e-learning during the Covid-19 pandemic: A qualitative study Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-2504543/v1
Background: In response to the emergency brought about by the Covid-19 pandemic, many universities around the world had to change their teaching methods from in-person classes to e-learning. The purpose of this study was to identify the learning strategies of nursing students in e-learning during the pandemic. Methods: This study had a qualitative design and used content analysis approach to collect and analyze the data. Sixteen semi-structured interviews were conducted with 12 Iranian undergraduate nursing students who were selected using purposive sampling method. Results: The results of the study showed that nursing students generally used two different strategies for e-learning, namely self-centered learning strategies and collaborative learning strategies. Some students, on the other hand, adopted a passive approach in their learning. Conclusion: In e-learning during the pandemic, students adopted different learning strategies. Therefore, designing teaching strategies tailored to the students’ strategies can promote their learning and academic achievement. Also, knowledge of these strategies helps policy makers and nursing educators to take necessary measures in order to optimize and facilitate student learning in an e-learning environment.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-2504543/v1
- https://www.researchsquare.com/article/rs-2504543/latest.pdf
- OA Status
- gold
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318262076
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318262076Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-2504543/v1Digital Object Identifier
- Title
-
Nursing students’ learning strategies for e-learning during the Covid-19 pandemic: A qualitative studyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-27Full publication date if available
- Authors
-
Nesa Cheraghbeigi, Shahram Molavynejad, Dariosh Rokhafroz, Nasrin Elahi, Eisa RezaeiList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-2504543/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-2504543/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-2504543/latest.pdfDirect OA link when available
- Concepts
-
Pandemic, Nonprobability sampling, Coronavirus disease 2019 (COVID-19), Psychology, Nursing, Nurse education, Qualitative research, Active learning (machine learning), Medical education, Mathematics education, Medicine, Computer science, Sociology, Disease, Artificial intelligence, Infectious disease (medical specialty), Environmental health, Pathology, Population, Social scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318262076 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-2504543/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-2504543/v1 |
| ids.openalex | https://openalex.org/W4318262076 |
| fwci | |
| type | preprint |
| title | Nursing students’ learning strategies for e-learning during the Covid-19 pandemic: A qualitative study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10162 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.992900013923645 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3304 |
| topics[0].subfield.display_name | Education |
| topics[0].display_name | Online and Blended Learning |
| topics[1].id | https://openalex.org/T10168 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9858999848365784 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3203 |
| topics[1].subfield.display_name | Clinical Psychology |
| topics[1].display_name | COVID-19 and Mental Health |
| topics[2].id | https://openalex.org/T14496 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9595999717712402 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Educational Technology and E-Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89623803 |
| concepts[0].level | 5 |
| concepts[0].score | 0.6944712400436401 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12184 |
| concepts[0].display_name | Pandemic |
| concepts[1].id | https://openalex.org/C100363876 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6729954481124878 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q690661 |
| concepts[1].display_name | Nonprobability sampling |
| concepts[2].id | https://openalex.org/C3008058167 |
| concepts[2].level | 4 |
| concepts[2].score | 0.5030555129051208 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[2].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.44806987047195435 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C159110408 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4459192454814911 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q121176 |
| concepts[4].display_name | Nursing |
| concepts[5].id | https://openalex.org/C113616995 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43777069449424744 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q13378080 |
| concepts[5].display_name | Nurse education |
| concepts[6].id | https://openalex.org/C190248442 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4264104664325714 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q839486 |
| concepts[6].display_name | Qualitative research |
| concepts[7].id | https://openalex.org/C77967617 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41181111335754395 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4677561 |
| concepts[7].display_name | Active learning (machine learning) |
| concepts[8].id | https://openalex.org/C509550671 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3699452877044678 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q126945 |
| concepts[8].display_name | Medical education |
| concepts[9].id | https://openalex.org/C145420912 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3403121829032898 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[9].display_name | Mathematics education |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3119240403175354 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2391776740550995 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C144024400 |
| concepts[12].level | 0 |
| concepts[12].score | 0.12961474061012268 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[12].display_name | Sociology |
| concepts[13].id | https://openalex.org/C2779134260 |
| concepts[13].level | 2 |
| concepts[13].score | 0.07623520493507385 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[13].display_name | Disease |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0713600218296051 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C524204448 |
| concepts[15].level | 3 |
| concepts[15].score | 0.06551694869995117 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[15].display_name | Infectious disease (medical specialty) |
| concepts[16].id | https://openalex.org/C99454951 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[16].display_name | Environmental health |
| concepts[17].id | https://openalex.org/C142724271 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[17].display_name | Pathology |
| concepts[18].id | https://openalex.org/C2908647359 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[18].display_name | Population |
| concepts[19].id | https://openalex.org/C36289849 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[19].display_name | Social science |
| keywords[0].id | https://openalex.org/keywords/pandemic |
| keywords[0].score | 0.6944712400436401 |
| keywords[0].display_name | Pandemic |
| keywords[1].id | https://openalex.org/keywords/nonprobability-sampling |
| keywords[1].score | 0.6729954481124878 |
| keywords[1].display_name | Nonprobability sampling |
| keywords[2].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[2].score | 0.5030555129051208 |
| keywords[2].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.44806987047195435 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/nursing |
| keywords[4].score | 0.4459192454814911 |
| keywords[4].display_name | Nursing |
| keywords[5].id | https://openalex.org/keywords/nurse-education |
| keywords[5].score | 0.43777069449424744 |
| keywords[5].display_name | Nurse education |
| keywords[6].id | https://openalex.org/keywords/qualitative-research |
| keywords[6].score | 0.4264104664325714 |
| keywords[6].display_name | Qualitative research |
| keywords[7].id | https://openalex.org/keywords/active-learning |
| keywords[7].score | 0.41181111335754395 |
| keywords[7].display_name | Active learning (machine learning) |
| keywords[8].id | https://openalex.org/keywords/medical-education |
| keywords[8].score | 0.3699452877044678 |
| keywords[8].display_name | Medical education |
| keywords[9].id | https://openalex.org/keywords/mathematics-education |
| keywords[9].score | 0.3403121829032898 |
| keywords[9].display_name | Mathematics education |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.3119240403175354 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.2391776740550995 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/sociology |
| keywords[12].score | 0.12961474061012268 |
| keywords[12].display_name | Sociology |
| keywords[13].id | https://openalex.org/keywords/disease |
| keywords[13].score | 0.07623520493507385 |
| keywords[13].display_name | Disease |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.0713600218296051 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/infectious-disease |
| keywords[15].score | 0.06551694869995117 |
| keywords[15].display_name | Infectious disease (medical specialty) |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-2504543/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-2504543/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-2504543/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090506747 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nesa Cheraghbeigi |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I119939603 |
| authorships[0].affiliations[0].raw_affiliation_string | Ahvaz Jundishapur University of Medical Sciences |
| authorships[0].institutions[0].id | https://openalex.org/I119939603 |
| authorships[0].institutions[0].ror | https://ror.org/01rws6r75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I119939603 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | Ahvaz Jundishapur University of Medical Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nesa Cheraghbeigi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Ahvaz Jundishapur University of Medical Sciences |
| authorships[1].author.id | https://openalex.org/A5112912250 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shahram Molavynejad |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I119939603 |
| authorships[1].affiliations[0].raw_affiliation_string | Ahvaz Jundishapur University of Medical Sciences |
| authorships[1].institutions[0].id | https://openalex.org/I119939603 |
| authorships[1].institutions[0].ror | https://ror.org/01rws6r75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I119939603 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Ahvaz Jundishapur University of Medical Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shahram Molavynejad |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Ahvaz Jundishapur University of Medical Sciences |
| authorships[2].author.id | https://openalex.org/A5074771170 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Dariosh Rokhafroz |
| authorships[2].countries | IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I119939603 |
| authorships[2].affiliations[0].raw_affiliation_string | Ahvaz Jundishapur University of Medical Sciences |
| authorships[2].institutions[0].id | https://openalex.org/I119939603 |
| authorships[2].institutions[0].ror | https://ror.org/01rws6r75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I119939603 |
| authorships[2].institutions[0].country_code | IR |
| authorships[2].institutions[0].display_name | Ahvaz Jundishapur University of Medical Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dariosh Rokhafroz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ahvaz Jundishapur University of Medical Sciences |
| authorships[3].author.id | https://openalex.org/A5026139918 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4283-0339 |
| authorships[3].author.display_name | Nasrin Elahi |
| authorships[3].countries | IR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I119939603 |
| authorships[3].affiliations[0].raw_affiliation_string | Ahvaz Jundishapur University of Medical Sciences |
| authorships[3].institutions[0].id | https://openalex.org/I119939603 |
| authorships[3].institutions[0].ror | https://ror.org/01rws6r75 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I119939603 |
| authorships[3].institutions[0].country_code | IR |
| authorships[3].institutions[0].display_name | Ahvaz Jundishapur University of Medical Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nasrin Elahi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Ahvaz Jundishapur University of Medical Sciences |
| authorships[4].author.id | https://openalex.org/A5060543856 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1918-2775 |
| authorships[4].author.display_name | Eisa Rezaei |
| authorships[4].affiliations[0].raw_affiliation_string | Smart University of Medical Sciences |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Eisa Rezaei |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Smart University of Medical Sciences |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-2504543/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Nursing students’ learning strategies for e-learning during the Covid-19 pandemic: A qualitative study |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10162 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.992900013923645 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3304 |
| primary_topic.subfield.display_name | Education |
| primary_topic.display_name | Online and Blended Learning |
| related_works | https://openalex.org/W3111736898, https://openalex.org/W4386731186, https://openalex.org/W2239306219, https://openalex.org/W3036063864, https://openalex.org/W1820505434, https://openalex.org/W2343697942, https://openalex.org/W3175946981, https://openalex.org/W2735219314, https://openalex.org/W2725198238, https://openalex.org/W2419321344 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-2504543/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-2504543/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2504543/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-2504543/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-2504543/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-2504543/v1 |
| publication_date | 2023-01-27 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3039102941, https://openalex.org/W1971158806, https://openalex.org/W4210717981, https://openalex.org/W4396871916, https://openalex.org/W4308344584, https://openalex.org/W3193571146, https://openalex.org/W4283745728, https://openalex.org/W2913864120, https://openalex.org/W3184644456, https://openalex.org/W2048708697, https://openalex.org/W2138664283, https://openalex.org/W2122328334, https://openalex.org/W1575714269, https://openalex.org/W4287832176, https://openalex.org/W2998181476, https://openalex.org/W2912744619, https://openalex.org/W1995385141, https://openalex.org/W3177363129, https://openalex.org/W2967815350, https://openalex.org/W4294176081, https://openalex.org/W2995754953, https://openalex.org/W2513509450, https://openalex.org/W2005918116, https://openalex.org/W6737545395, https://openalex.org/W3144519367, https://openalex.org/W2998167998, https://openalex.org/W3175155790, https://openalex.org/W3019064164, https://openalex.org/W2883918230, https://openalex.org/W2906953263, https://openalex.org/W4296331643, https://openalex.org/W2799985664, https://openalex.org/W4238594387, https://openalex.org/W3197256912, https://openalex.org/W4206214110, https://openalex.org/W3016162600, https://openalex.org/W3097777241, https://openalex.org/W2611961516 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 52, 116 |
| abstract_inverted_index.12 | 72 |
| abstract_inverted_index.In | 2, 123 |
| abstract_inverted_index.an | 173 |
| abstract_inverted_index.by | 9 |
| abstract_inverted_index.in | 43, 119, 164, 172 |
| abstract_inverted_index.of | 31, 40, 87, 151 |
| abstract_inverted_index.on | 111 |
| abstract_inverted_index.to | 4, 19, 27, 35, 60, 138, 160, 166 |
| abstract_inverted_index.The | 29, 85 |
| abstract_inverted_index.and | 55, 62, 105, 146, 157, 168 |
| abstract_inverted_index.can | 142 |
| abstract_inverted_index.for | 99 |
| abstract_inverted_index.had | 18, 51 |
| abstract_inverted_index.the | 5, 10, 16, 37, 46, 64, 88, 112, 126, 139 |
| abstract_inverted_index.two | 96 |
| abstract_inverted_index.was | 34 |
| abstract_inverted_index.who | 77 |
| abstract_inverted_index.Some | 109 |
| abstract_inverted_index.This | 49 |
| abstract_inverted_index.from | 24 |
| abstract_inverted_index.many | 13 |
| abstract_inverted_index.take | 161 |
| abstract_inverted_index.that | 91 |
| abstract_inverted_index.this | 32 |
| abstract_inverted_index.used | 56, 95 |
| abstract_inverted_index.were | 69, 78 |
| abstract_inverted_index.with | 71 |
| abstract_inverted_index.Also, | 149 |
| abstract_inverted_index.about | 8 |
| abstract_inverted_index.data. | 65 |
| abstract_inverted_index.hand, | 114 |
| abstract_inverted_index.helps | 154 |
| abstract_inverted_index.order | 165 |
| abstract_inverted_index.other | 113 |
| abstract_inverted_index.study | 33, 50, 89 |
| abstract_inverted_index.their | 21, 120, 144 |
| abstract_inverted_index.these | 152 |
| abstract_inverted_index.using | 80 |
| abstract_inverted_index.world | 17 |
| abstract_inverted_index.around | 15 |
| abstract_inverted_index.change | 20 |
| abstract_inverted_index.design | 54 |
| abstract_inverted_index.during | 45, 125 |
| abstract_inverted_index.makers | 156 |
| abstract_inverted_index.namely | 101 |
| abstract_inverted_index.policy | 155 |
| abstract_inverted_index.showed | 90 |
| abstract_inverted_index.Iranian | 73 |
| abstract_inverted_index.Sixteen | 66 |
| abstract_inverted_index.adopted | 115, 129 |
| abstract_inverted_index.analyze | 63 |
| abstract_inverted_index.brought | 7 |
| abstract_inverted_index.classes | 26 |
| abstract_inverted_index.collect | 61 |
| abstract_inverted_index.content | 57 |
| abstract_inverted_index.method. | 83 |
| abstract_inverted_index.methods | 23 |
| abstract_inverted_index.nursing | 41, 75, 92, 158 |
| abstract_inverted_index.passive | 117 |
| abstract_inverted_index.promote | 143 |
| abstract_inverted_index.purpose | 30 |
| abstract_inverted_index.results | 86 |
| abstract_inverted_index.student | 170 |
| abstract_inverted_index.Covid-19 | 11 |
| abstract_inverted_index.academic | 147 |
| abstract_inverted_index.analysis | 58 |
| abstract_inverted_index.approach | 59, 118 |
| abstract_inverted_index.identify | 36 |
| abstract_inverted_index.learning | 38, 103, 107, 131, 145, 171 |
| abstract_inverted_index.measures | 163 |
| abstract_inverted_index.optimize | 167 |
| abstract_inverted_index.response | 3 |
| abstract_inverted_index.sampling | 82 |
| abstract_inverted_index.selected | 79 |
| abstract_inverted_index.students | 42, 76, 93, 128 |
| abstract_inverted_index.tailored | 137 |
| abstract_inverted_index.teaching | 22, 135 |
| abstract_inverted_index.conducted | 70 |
| abstract_inverted_index.designing | 134 |
| abstract_inverted_index.different | 97, 130 |
| abstract_inverted_index.educators | 159 |
| abstract_inverted_index.emergency | 6 |
| abstract_inverted_index.generally | 94 |
| abstract_inverted_index.in-person | 25 |
| abstract_inverted_index.knowledge | 150 |
| abstract_inverted_index.learning. | 121 |
| abstract_inverted_index.necessary | 162 |
| abstract_inverted_index.pandemic, | 12, 127 |
| abstract_inverted_index.pandemic. | 47 |
| abstract_inverted_index.purposive | 81 |
| abstract_inverted_index.students, | 110 |
| abstract_inverted_index.Therefore, | 133 |
| abstract_inverted_index.e-learning | 44, 124, 174 |
| abstract_inverted_index.facilitate | 169 |
| abstract_inverted_index.interviews | 68 |
| abstract_inverted_index.strategies | 39, 98, 104, 136, 141, 153 |
| abstract_inverted_index.e-learning, | 100 |
| abstract_inverted_index.e-learning. | 28 |
| abstract_inverted_index.qualitative | 53 |
| abstract_inverted_index.strategies. | 108, 132 |
| abstract_inverted_index.students’ | 140 |
| abstract_inverted_index.achievement. | 148 |
| abstract_inverted_index.environment. | 175 |
| abstract_inverted_index.universities | 14 |
| abstract_inverted_index.collaborative | 106 |
| abstract_inverted_index.self-centered | 102 |
| abstract_inverted_index.undergraduate | 74 |
| abstract_inverted_index.semi-structured | 67 |
| abstract_inverted_index.<bold>Methods:</bold> | 48 |
| abstract_inverted_index.<bold>Results:</bold> | 84 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| abstract_inverted_index.<bold>Background:</bold> | 1 |
| abstract_inverted_index.<bold>Conclusion:</bold> | 122 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.01541415 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |