Nutrient Content Prediction and Geographical Origin Identification of Bananas by Combining Hyperspectral Imaging with Chemometrics Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/foods13223631
The nutritional quality of bananas and their geographical origin authenticity are very important for trade. There is an urgent need for rapid, non-destructive testing to improve the origin and quality assurance for importers, distributors, and consumers. In this study, 99 banana samples from a range of producing countries were collected. Hyperspectral data were combined with chemometric methods to construct quantitative and qualitative models for bananas, predicting soluble solids content (SSC), potassium content (K), and country of origin. A second derivative analysis combined with competitive adaptive weighted sampling (CARS) and random frog jumping (RF) was selected as the best pre-treatment method for the prediction of SSC and K content, respectively. Partial least squares (PLS) models achieved R2p values of 0.8012 and 0.8606 for SSC and K content, respectively. Chinese domestic and imported bananas were classified with a prediction accuracy of 95.83% using partial least squares-discriminant analysis (PLS-DA) and an RF method that screened the spectral variables after a second pretreatment. These results showed that hyperspectral imaging technology could be effectively used to non-destructively predict the nutrient contents of bananas and identify their geographical origin. In the future, this technology can be applied to determine the nutritional quality composition and geographical origin of bananas from other countries.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/foods13223631
- OA Status
- gold
- Cited By
- 2
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404376765
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404376765Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/foods13223631Digital Object Identifier
- Title
-
Nutrient Content Prediction and Geographical Origin Identification of Bananas by Combining Hyperspectral Imaging with ChemometricsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-14Full publication date if available
- Authors
-
Huamei Xiao, Chunlin Li, Mingyue Wang, Zhibo Huan, Hanyi Mei, Jing Nie, Karyne M. Rogers, Zhen Wu, Yuwei YuanList of authors in order
- Landing page
-
https://doi.org/10.3390/foods13223631Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/foods13223631Direct OA link when available
- Concepts
-
Hyperspectral imaging, Chemometrics, Identification (biology), Content (measure theory), Nutrient, Pattern recognition (psychology), Computer science, Environmental science, Biological system, Artificial intelligence, Mathematics, Biology, Botany, Machine learning, Ecology, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404376765 |
|---|---|
| doi | https://doi.org/10.3390/foods13223631 |
| ids.doi | https://doi.org/10.3390/foods13223631 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39594047 |
| ids.openalex | https://openalex.org/W4404376765 |
| fwci | 0.89121286 |
| type | article |
| title | Nutrient Content Prediction and Geographical Origin Identification of Bananas by Combining Hyperspectral Imaging with Chemometrics |
| biblio.issue | 22 |
| biblio.volume | 13 |
| biblio.last_page | 3631 |
| biblio.first_page | 3631 |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T11667 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9904000163078308 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced Chemical Sensor Technologies |
| topics[2].id | https://openalex.org/T12388 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9746999740600586 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Identification and Quantification in Food |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9445382356643677 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C151304367 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8988214135169983 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q910067 |
| concepts[1].display_name | Chemometrics |
| concepts[2].id | https://openalex.org/C116834253 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5762546062469482 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[2].display_name | Identification (biology) |
| concepts[3].id | https://openalex.org/C2778152352 |
| concepts[3].level | 2 |
| concepts[3].score | 0.502582311630249 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165061 |
| concepts[3].display_name | Content (measure theory) |
| concepts[4].id | https://openalex.org/C142796444 |
| concepts[4].level | 2 |
| concepts[4].score | 0.50248122215271 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q181394 |
| concepts[4].display_name | Nutrient |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.3916420042514801 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.36814698576927185 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C39432304 |
| concepts[7].level | 0 |
| concepts[7].score | 0.33842208981513977 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[7].display_name | Environmental science |
| concepts[8].id | https://openalex.org/C186060115 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3302863836288452 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[8].display_name | Biological system |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.31110528111457825 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.25258365273475647 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2310410737991333 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C59822182 |
| concepts[12].level | 1 |
| concepts[12].score | 0.20610523223876953 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[12].display_name | Botany |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.18175837397575378 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C18903297 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1254851520061493 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[14].display_name | Ecology |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.9445382356643677 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/chemometrics |
| keywords[1].score | 0.8988214135169983 |
| keywords[1].display_name | Chemometrics |
| keywords[2].id | https://openalex.org/keywords/identification |
| keywords[2].score | 0.5762546062469482 |
| keywords[2].display_name | Identification (biology) |
| keywords[3].id | https://openalex.org/keywords/content |
| keywords[3].score | 0.502582311630249 |
| keywords[3].display_name | Content (measure theory) |
| keywords[4].id | https://openalex.org/keywords/nutrient |
| keywords[4].score | 0.50248122215271 |
| keywords[4].display_name | Nutrient |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.3916420042514801 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.36814698576927185 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/environmental-science |
| keywords[7].score | 0.33842208981513977 |
| keywords[7].display_name | Environmental science |
| keywords[8].id | https://openalex.org/keywords/biological-system |
| keywords[8].score | 0.3302863836288452 |
| keywords[8].display_name | Biological system |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.31110528111457825 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.25258365273475647 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.2310410737991333 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/botany |
| keywords[12].score | 0.20610523223876953 |
| keywords[12].display_name | Botany |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.18175837397575378 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/ecology |
| keywords[14].score | 0.1254851520061493 |
| keywords[14].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.3390/foods13223631 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737939966 |
| locations[0].source.issn | 2304-8158 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2304-8158 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Foods |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Foods |
| locations[0].landing_page_url | https://doi.org/10.3390/foods13223631 |
| locations[1].id | pmid:39594047 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Foods (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39594047 |
| locations[2].id | pmh:oai:doaj.org/article:78754678023c4db891395436f8b90139 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Foods, Vol 13, Iss 22, p 3631 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/78754678023c4db891395436f8b90139 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11594207 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Foods |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11594207 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5061243444 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0165-7410 |
| authorships[0].author.display_name | Huamei Xiao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210126939, https://openalex.org/I4210151987 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I109935558 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Food Science and Engineering, Ningbo University, Ningbo 315211, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210151987 |
| authorships[0].institutions[0].ror | https://ror.org/05ckt8b96 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[0].institutions[1].id | https://openalex.org/I109935558 |
| authorships[0].institutions[1].ror | https://ror.org/03et85d35 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I109935558 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ningbo University |
| authorships[0].institutions[2].id | https://openalex.org/I4210126939 |
| authorships[0].institutions[2].ror | https://ror.org/02qbc3192 |
| authorships[0].institutions[2].type | nonprofit |
| authorships[0].institutions[2].lineage | https://openalex.org/I4210126939 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | ZheJiang Academy of Agricultural Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Honghui Xiao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Food Science and Engineering, Ningbo University, Ningbo 315211, China, Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[1].author.id | https://openalex.org/A5100388482 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1987-7174 |
| authorships[1].author.display_name | Chunlin Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210126939 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210126939, https://openalex.org/I4210151987 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210151987 |
| authorships[1].institutions[0].ror | https://ror.org/05ckt8b96 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[1].institutions[1].id | https://openalex.org/I4210126939 |
| authorships[1].institutions[1].ror | https://ror.org/02qbc3192 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210126939 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | ZheJiang Academy of Agricultural Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chunlin Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[2].author.id | https://openalex.org/A5115589238 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-2366-1952 |
| authorships[2].author.display_name | Mingyue Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I107851509 |
| authorships[2].affiliations[0].raw_affiliation_string | Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China |
| authorships[2].institutions[0].id | https://openalex.org/I107851509 |
| authorships[2].institutions[0].ror | https://ror.org/003qeh975 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I107851509, https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Tropical Agricultural Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mingyue Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China |
| authorships[3].author.id | https://openalex.org/A5062453211 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhibo Huan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I107851509 |
| authorships[3].affiliations[0].raw_affiliation_string | Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China |
| authorships[3].institutions[0].id | https://openalex.org/I107851509 |
| authorships[3].institutions[0].ror | https://ror.org/003qeh975 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I107851509, https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Tropical Agricultural Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhibo Huan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China |
| authorships[4].author.id | https://openalex.org/A5008847142 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9176-3235 |
| authorships[4].author.display_name | Hanyi Mei |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210126939 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210126939, https://openalex.org/I4210151987 |
| authorships[4].affiliations[1].raw_affiliation_string | Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210151987 |
| authorships[4].institutions[0].ror | https://ror.org/05ckt8b96 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[4].institutions[1].id | https://openalex.org/I4210126939 |
| authorships[4].institutions[1].ror | https://ror.org/02qbc3192 |
| authorships[4].institutions[1].type | nonprofit |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210126939 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | ZheJiang Academy of Agricultural Sciences |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hanyi Mei |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[5].author.id | https://openalex.org/A5062859929 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4256-7796 |
| authorships[5].author.display_name | Jing Nie |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210126939, https://openalex.org/I4210151987 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210126939 |
| authorships[5].affiliations[1].raw_affiliation_string | State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210151987 |
| authorships[5].institutions[0].ror | https://ror.org/05ckt8b96 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[5].institutions[1].id | https://openalex.org/I4210126939 |
| authorships[5].institutions[1].ror | https://ror.org/02qbc3192 |
| authorships[5].institutions[1].type | nonprofit |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210126939 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | ZheJiang Academy of Agricultural Sciences |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jing Nie |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[6].author.id | https://openalex.org/A5039749301 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8464-4337 |
| authorships[6].author.display_name | Karyne M. Rogers |
| authorships[6].countries | NZ |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I11886867 |
| authorships[6].affiliations[0].raw_affiliation_string | National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand |
| authorships[6].institutions[0].id | https://openalex.org/I11886867 |
| authorships[6].institutions[0].ror | https://ror.org/03vaqfv64 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I11886867, https://openalex.org/I4414411271 |
| authorships[6].institutions[0].country_code | NZ |
| authorships[6].institutions[0].display_name | GNS Science |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Karyne M. Rogers |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt 5040, New Zealand |
| authorships[7].author.id | https://openalex.org/A5050745133 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Zhen Wu |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I109935558 |
| authorships[7].affiliations[0].raw_affiliation_string | College of Food Science and Engineering, Ningbo University, Ningbo 315211, China |
| authorships[7].institutions[0].id | https://openalex.org/I109935558 |
| authorships[7].institutions[0].ror | https://ror.org/03et85d35 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I109935558 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Ningbo University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhen Wu |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | College of Food Science and Engineering, Ningbo University, Ningbo 315211, China |
| authorships[8].author.id | https://openalex.org/A5035349911 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6707-2373 |
| authorships[8].author.display_name | Yuwei Yuan |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210126939, https://openalex.org/I4210151987 |
| authorships[8].affiliations[0].raw_affiliation_string | Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I4210126939 |
| authorships[8].affiliations[1].raw_affiliation_string | State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| authorships[8].institutions[0].id | https://openalex.org/I4210151987 |
| authorships[8].institutions[0].ror | https://ror.org/05ckt8b96 |
| authorships[8].institutions[0].type | government |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[8].institutions[1].id | https://openalex.org/I4210126939 |
| authorships[8].institutions[1].ror | https://ror.org/02qbc3192 |
| authorships[8].institutions[1].type | nonprofit |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210126939 |
| authorships[8].institutions[1].country_code | CN |
| authorships[8].institutions[1].display_name | ZheJiang Academy of Agricultural Sciences |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Yuwei Yuan |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/foods13223631 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Nutrient Content Prediction and Geographical Origin Identification of Bananas by Combining Hyperspectral Imaging with Chemometrics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W3209970181, https://openalex.org/W2060875994, https://openalex.org/W3034375524, https://openalex.org/W4230131218, https://openalex.org/W2404757046, https://openalex.org/W2044184146, https://openalex.org/W2070598848, https://openalex.org/W2019190440, https://openalex.org/W3034864990 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/foods13223631 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737939966 |
| best_oa_location.source.issn | 2304-8158 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2304-8158 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Foods |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Foods |
| best_oa_location.landing_page_url | https://doi.org/10.3390/foods13223631 |
| primary_location.id | doi:10.3390/foods13223631 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737939966 |
| primary_location.source.issn | 2304-8158 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2304-8158 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Foods |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Foods |
| primary_location.landing_page_url | https://doi.org/10.3390/foods13223631 |
| publication_date | 2024-11-14 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3137127392, https://openalex.org/W3127831478, https://openalex.org/W4302004538, https://openalex.org/W4293571882, https://openalex.org/W4318757160, https://openalex.org/W2898740592, https://openalex.org/W4210506817, https://openalex.org/W4365455655, https://openalex.org/W2794244565, https://openalex.org/W4382049838, https://openalex.org/W4306377435, https://openalex.org/W4224296459, https://openalex.org/W4392888761, https://openalex.org/W2787789065, https://openalex.org/W4391542737, https://openalex.org/W4396725818, https://openalex.org/W4283792729, https://openalex.org/W4289133997, https://openalex.org/W3151440642, https://openalex.org/W3192391809, https://openalex.org/W3036170986, https://openalex.org/W4395676263, https://openalex.org/W4386069987, https://openalex.org/W2052600159, https://openalex.org/W2054403851, https://openalex.org/W2992654169, https://openalex.org/W46758312, https://openalex.org/W6806507088, https://openalex.org/W4313414527, https://openalex.org/W4317036974, https://openalex.org/W3027880009, https://openalex.org/W2120761540, https://openalex.org/W3006618589, https://openalex.org/W3161749833, https://openalex.org/W6811097551, https://openalex.org/W3006148482, https://openalex.org/W4324131072, https://openalex.org/W4388821942, https://openalex.org/W6850311013, https://openalex.org/W3080088662, https://openalex.org/W1973128549, https://openalex.org/W2291011663, https://openalex.org/W2589020030, https://openalex.org/W4360984907, https://openalex.org/W3092922572, https://openalex.org/W4224293588, https://openalex.org/W4321600938, https://openalex.org/W4206061802 |
| referenced_works_count | 48 |
| abstract_inverted_index.A | 77 |
| abstract_inverted_index.K | 106, 124 |
| abstract_inverted_index.a | 43, 135, 156 |
| abstract_inverted_index.99 | 39 |
| abstract_inverted_index.In | 36, 183 |
| abstract_inverted_index.RF | 148 |
| abstract_inverted_index.an | 17, 147 |
| abstract_inverted_index.as | 95 |
| abstract_inverted_index.be | 167, 189 |
| abstract_inverted_index.is | 16 |
| abstract_inverted_index.of | 3, 45, 75, 103, 117, 138, 176, 200 |
| abstract_inverted_index.to | 24, 57, 170, 191 |
| abstract_inverted_index.R2p | 115 |
| abstract_inverted_index.SSC | 104, 122 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 5, 28, 34, 60, 73, 88, 105, 119, 123, 129, 146, 178, 197 |
| abstract_inverted_index.are | 10 |
| abstract_inverted_index.can | 188 |
| abstract_inverted_index.for | 13, 20, 31, 63, 100, 121 |
| abstract_inverted_index.the | 26, 96, 101, 152, 173, 184, 193 |
| abstract_inverted_index.was | 93 |
| abstract_inverted_index.(K), | 72 |
| abstract_inverted_index.(RF) | 92 |
| abstract_inverted_index.best | 97 |
| abstract_inverted_index.data | 51 |
| abstract_inverted_index.frog | 90 |
| abstract_inverted_index.from | 42, 202 |
| abstract_inverted_index.need | 19 |
| abstract_inverted_index.that | 150, 162 |
| abstract_inverted_index.this | 37, 186 |
| abstract_inverted_index.used | 169 |
| abstract_inverted_index.very | 11 |
| abstract_inverted_index.were | 48, 52, 132 |
| abstract_inverted_index.with | 54, 82, 134 |
| abstract_inverted_index.(PLS) | 112 |
| abstract_inverted_index.There | 15 |
| abstract_inverted_index.These | 159 |
| abstract_inverted_index.after | 155 |
| abstract_inverted_index.could | 166 |
| abstract_inverted_index.least | 110, 142 |
| abstract_inverted_index.other | 203 |
| abstract_inverted_index.range | 44 |
| abstract_inverted_index.their | 6, 180 |
| abstract_inverted_index.using | 140 |
| abstract_inverted_index.(CARS) | 87 |
| abstract_inverted_index.(SSC), | 69 |
| abstract_inverted_index.0.8012 | 118 |
| abstract_inverted_index.0.8606 | 120 |
| abstract_inverted_index.95.83% | 139 |
| abstract_inverted_index.banana | 40 |
| abstract_inverted_index.method | 99, 149 |
| abstract_inverted_index.models | 62, 113 |
| abstract_inverted_index.origin | 8, 27, 199 |
| abstract_inverted_index.random | 89 |
| abstract_inverted_index.rapid, | 21 |
| abstract_inverted_index.second | 78, 157 |
| abstract_inverted_index.showed | 161 |
| abstract_inverted_index.solids | 67 |
| abstract_inverted_index.study, | 38 |
| abstract_inverted_index.trade. | 14 |
| abstract_inverted_index.urgent | 18 |
| abstract_inverted_index.values | 116 |
| abstract_inverted_index.Chinese | 127 |
| abstract_inverted_index.Partial | 109 |
| abstract_inverted_index.applied | 190 |
| abstract_inverted_index.bananas | 4, 131, 177, 201 |
| abstract_inverted_index.content | 68, 71 |
| abstract_inverted_index.country | 74 |
| abstract_inverted_index.future, | 185 |
| abstract_inverted_index.imaging | 164 |
| abstract_inverted_index.improve | 25 |
| abstract_inverted_index.jumping | 91 |
| abstract_inverted_index.methods | 56 |
| abstract_inverted_index.origin. | 76, 182 |
| abstract_inverted_index.partial | 141 |
| abstract_inverted_index.predict | 172 |
| abstract_inverted_index.quality | 2, 29, 195 |
| abstract_inverted_index.results | 160 |
| abstract_inverted_index.samples | 41 |
| abstract_inverted_index.soluble | 66 |
| abstract_inverted_index.squares | 111 |
| abstract_inverted_index.testing | 23 |
| abstract_inverted_index.(PLS-DA) | 145 |
| abstract_inverted_index.accuracy | 137 |
| abstract_inverted_index.achieved | 114 |
| abstract_inverted_index.adaptive | 84 |
| abstract_inverted_index.analysis | 80, 144 |
| abstract_inverted_index.bananas, | 64 |
| abstract_inverted_index.combined | 53, 81 |
| abstract_inverted_index.content, | 107, 125 |
| abstract_inverted_index.contents | 175 |
| abstract_inverted_index.domestic | 128 |
| abstract_inverted_index.identify | 179 |
| abstract_inverted_index.imported | 130 |
| abstract_inverted_index.nutrient | 174 |
| abstract_inverted_index.sampling | 86 |
| abstract_inverted_index.screened | 151 |
| abstract_inverted_index.selected | 94 |
| abstract_inverted_index.spectral | 153 |
| abstract_inverted_index.weighted | 85 |
| abstract_inverted_index.assurance | 30 |
| abstract_inverted_index.construct | 58 |
| abstract_inverted_index.countries | 47 |
| abstract_inverted_index.determine | 192 |
| abstract_inverted_index.important | 12 |
| abstract_inverted_index.potassium | 70 |
| abstract_inverted_index.producing | 46 |
| abstract_inverted_index.variables | 154 |
| abstract_inverted_index.classified | 133 |
| abstract_inverted_index.collected. | 49 |
| abstract_inverted_index.consumers. | 35 |
| abstract_inverted_index.countries. | 204 |
| abstract_inverted_index.derivative | 79 |
| abstract_inverted_index.importers, | 32 |
| abstract_inverted_index.predicting | 65 |
| abstract_inverted_index.prediction | 102, 136 |
| abstract_inverted_index.technology | 165, 187 |
| abstract_inverted_index.chemometric | 55 |
| abstract_inverted_index.competitive | 83 |
| abstract_inverted_index.composition | 196 |
| abstract_inverted_index.effectively | 168 |
| abstract_inverted_index.nutritional | 1, 194 |
| abstract_inverted_index.qualitative | 61 |
| abstract_inverted_index.authenticity | 9 |
| abstract_inverted_index.geographical | 7, 181, 198 |
| abstract_inverted_index.quantitative | 59 |
| abstract_inverted_index.Hyperspectral | 50 |
| abstract_inverted_index.distributors, | 33 |
| abstract_inverted_index.hyperspectral | 163 |
| abstract_inverted_index.pre-treatment | 98 |
| abstract_inverted_index.pretreatment. | 158 |
| abstract_inverted_index.respectively. | 108, 126 |
| abstract_inverted_index.non-destructive | 22 |
| abstract_inverted_index.non-destructively | 171 |
| abstract_inverted_index.squares-discriminant | 143 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5050745133, https://openalex.org/A5035349911 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I109935558, https://openalex.org/I4210126939, https://openalex.org/I4210151987 |
| citation_normalized_percentile.value | 0.67506649 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |