NysX: An Accurate and Energy-Efficient FPGA Accelerator for Hyperdimensional Graph Classification at the Edge Article Swipe
Real-time, energy-efficient inference on edge devices is essential for graph classification across a range of applications. Hyperdimensional Computing (HDC) is a brain-inspired computing paradigm that encodes input features into low-precision, high-dimensional vectors with simple element-wise operations, making it well-suited for resource-constrained edge platforms. Recent work enhances HDC accuracy for graph classification via Nyström kernel approximations. Edge acceleration of such methods faces several challenges: (i) redundancy among (landmark) samples selected via uniform sampling, (ii) storing the Nyström projection matrix under limited on-chip memory, (iii) expensive, contention-prone codebook lookups, and (iv) load imbalance due to irregular sparsity in SpMV. To address these challenges, we propose NysX, the first end-to-end FPGA accelerator for Nyström-based HDC graph classification at the edge. NysX integrates four key optimizations: (i) a hybrid landmark selection strategy combining uniform sampling with determinantal point processes (DPPs) to reduce redundancy while improving accuracy; (ii) a streaming architecture for Nyström projection matrix maximizing external memory bandwidth utilization; (iii) a minimal-perfect-hash lookup engine enabling $O(1)$ key-to-index mapping with low on-chip memory overhead; and (iv) sparsity-aware SpMV engines with static load balancing. Together, these innovations enable real-time, energy-efficient inference on resource-constrained platforms. Implemented on an AMD Zynq UltraScale+ (ZCU104) FPGA, NysX achieves $6.85\times$ ($4.32\times$) speedup and $169\times$ ($314\times$) energy efficiency gains over optimized CPU (GPU) baselines, while improving classification accuracy by $3.4\%$ on average across TUDataset benchmarks, a widely used standard for graph classification.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2512.08089
- https://arxiv.org/pdf/2512.08089
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7114820672
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7114820672Canonical identifier for this work in OpenAlex
- Title
-
NysX: An Accurate and Energy-Efficient FPGA Accelerator for Hyperdimensional Graph Classification at the EdgeWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
Arockiaraj, Jebacyril, Parikh, Dhruv, Prasanna, ViktorList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.08089Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.08089Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.08089Direct OA link when available
- Concepts
-
Computer science, Speedup, Inference, Redundancy (engineering), Field-programmable gate array, Lookup table, Graph, Edge computing, Parallel computing, Hardware acceleration, Data redundancy, Computation, Algorithm, Kernel (algebra), PCI Express, Theoretical computer science, High memory, Computer engineering, Inference engine, Classifier (UML), Sparse matrix, Floating point, Byte, Pattern recognition (psychology), Enhanced Data Rates for GSM Evolution, Memory bandwidth, Edge detection, Codebook, Edge device, Artificial intelligence, Matrix multiplicationTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7114820672 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7114820672 |
| fwci | 0.0 |
| type | article |
| title | NysX: An Accurate and Energy-Efficient FPGA Accelerator for Hyperdimensional Graph Classification at the Edge |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12808 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9916960597038269 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Ferroelectric and Negative Capacitance Devices |
| topics[1].id | https://openalex.org/T10049 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.0018738431390374899 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3107 |
| topics[1].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[1].display_name | Magnetic properties of thin films |
| topics[2].id | https://openalex.org/T10502 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.0018429206684231758 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Memory and Neural Computing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7613694071769714 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C68339613 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6294282078742981 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[1].display_name | Speedup |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5852665901184082 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C152124472 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5133164525032043 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1204361 |
| concepts[3].display_name | Redundancy (engineering) |
| concepts[4].id | https://openalex.org/C42935608 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4836482107639313 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190411 |
| concepts[4].display_name | Field-programmable gate array |
| concepts[5].id | https://openalex.org/C134835016 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4703453481197357 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q690265 |
| concepts[5].display_name | Lookup table |
| concepts[6].id | https://openalex.org/C132525143 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4486229121685028 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[6].display_name | Graph |
| concepts[7].id | https://openalex.org/C2778456923 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4323846399784088 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[7].display_name | Edge computing |
| concepts[8].id | https://openalex.org/C173608175 |
| concepts[8].level | 1 |
| concepts[8].score | 0.400457501411438 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[8].display_name | Parallel computing |
| concepts[9].id | https://openalex.org/C13164978 |
| concepts[9].level | 3 |
| concepts[9].score | 0.39094141125679016 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q600158 |
| concepts[9].display_name | Hardware acceleration |
| concepts[10].id | https://openalex.org/C7545210 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3657821714878082 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q838123 |
| concepts[10].display_name | Data redundancy |
| concepts[11].id | https://openalex.org/C45374587 |
| concepts[11].level | 2 |
| concepts[11].score | 0.36482417583465576 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[11].display_name | Computation |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3352421522140503 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C74193536 |
| concepts[13].level | 2 |
| concepts[13].score | 0.33395135402679443 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[13].display_name | Kernel (algebra) |
| concepts[14].id | https://openalex.org/C64270927 |
| concepts[14].level | 3 |
| concepts[14].score | 0.3317733705043793 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q206924 |
| concepts[14].display_name | PCI Express |
| concepts[15].id | https://openalex.org/C80444323 |
| concepts[15].level | 1 |
| concepts[15].score | 0.32730337977409363 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[15].display_name | Theoretical computer science |
| concepts[16].id | https://openalex.org/C2781357197 |
| concepts[16].level | 2 |
| concepts[16].score | 0.31058481335639954 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5757597 |
| concepts[16].display_name | High memory |
| concepts[17].id | https://openalex.org/C113775141 |
| concepts[17].level | 1 |
| concepts[17].score | 0.3104154169559479 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[17].display_name | Computer engineering |
| concepts[18].id | https://openalex.org/C46743427 |
| concepts[18].level | 3 |
| concepts[18].score | 0.30589210987091064 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1341685 |
| concepts[18].display_name | Inference engine |
| concepts[19].id | https://openalex.org/C95623464 |
| concepts[19].level | 2 |
| concepts[19].score | 0.30086398124694824 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[19].display_name | Classifier (UML) |
| concepts[20].id | https://openalex.org/C56372850 |
| concepts[20].level | 3 |
| concepts[20].score | 0.2875168025493622 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1050404 |
| concepts[20].display_name | Sparse matrix |
| concepts[21].id | https://openalex.org/C84211073 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2824479639530182 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q117879 |
| concepts[21].display_name | Floating point |
| concepts[22].id | https://openalex.org/C43364308 |
| concepts[22].level | 2 |
| concepts[22].score | 0.27639931440353394 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8799 |
| concepts[22].display_name | Byte |
| concepts[23].id | https://openalex.org/C153180895 |
| concepts[23].level | 2 |
| concepts[23].score | 0.27385058999061584 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[23].display_name | Pattern recognition (psychology) |
| concepts[24].id | https://openalex.org/C162307627 |
| concepts[24].level | 2 |
| concepts[24].score | 0.26653972268104553 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[24].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[25].id | https://openalex.org/C188045654 |
| concepts[25].level | 2 |
| concepts[25].score | 0.26589858531951904 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q17148339 |
| concepts[25].display_name | Memory bandwidth |
| concepts[26].id | https://openalex.org/C193536780 |
| concepts[26].level | 4 |
| concepts[26].score | 0.2652107775211334 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q1513153 |
| concepts[26].display_name | Edge detection |
| concepts[27].id | https://openalex.org/C127759330 |
| concepts[27].level | 2 |
| concepts[27].score | 0.2643541395664215 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q637416 |
| concepts[27].display_name | Codebook |
| concepts[28].id | https://openalex.org/C138236772 |
| concepts[28].level | 3 |
| concepts[28].score | 0.2592306435108185 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q25098575 |
| concepts[28].display_name | Edge device |
| concepts[29].id | https://openalex.org/C154945302 |
| concepts[29].level | 1 |
| concepts[29].score | 0.25867316126823425 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[29].display_name | Artificial intelligence |
| concepts[30].id | https://openalex.org/C17349429 |
| concepts[30].level | 3 |
| concepts[30].score | 0.25511929392814636 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q1049914 |
| concepts[30].display_name | Matrix multiplication |
| keywords[0].id | https://openalex.org/keywords/speedup |
| keywords[0].score | 0.6294282078742981 |
| keywords[0].display_name | Speedup |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.5852665901184082 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/redundancy |
| keywords[2].score | 0.5133164525032043 |
| keywords[2].display_name | Redundancy (engineering) |
| keywords[3].id | https://openalex.org/keywords/field-programmable-gate-array |
| keywords[3].score | 0.4836482107639313 |
| keywords[3].display_name | Field-programmable gate array |
| keywords[4].id | https://openalex.org/keywords/lookup-table |
| keywords[4].score | 0.4703453481197357 |
| keywords[4].display_name | Lookup table |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.4486229121685028 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/edge-computing |
| keywords[6].score | 0.4323846399784088 |
| keywords[6].display_name | Edge computing |
| keywords[7].id | https://openalex.org/keywords/hardware-acceleration |
| keywords[7].score | 0.39094141125679016 |
| keywords[7].display_name | Hardware acceleration |
| keywords[8].id | https://openalex.org/keywords/data-redundancy |
| keywords[8].score | 0.3657821714878082 |
| keywords[8].display_name | Data redundancy |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.08089 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.08089 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.08089 |
| indexed_in | arxiv |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Arockiaraj, Jebacyril |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arockiaraj, Jebacyril |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Parikh, Dhruv |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Parikh, Dhruv |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Prasanna, Viktor |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Prasanna, Viktor |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.08089 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-11T00:00:00 |
| display_name | NysX: An Accurate and Energy-Efficient FPGA Accelerator for Hyperdimensional Graph Classification at the Edge |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T23:13:37.075516 |
| primary_topic.id | https://openalex.org/T12808 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9916960597038269 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Ferroelectric and Negative Capacitance Devices |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.08089 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.08089 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.08089 |
| primary_location.id | pmh:oai:arXiv.org:2512.08089 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.08089 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.08089 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 20, 123, 143, 156, 223 |
| abstract_inverted_index.To | 97 |
| abstract_inverted_index.an | 190 |
| abstract_inverted_index.at | 114 |
| abstract_inverted_index.by | 216 |
| abstract_inverted_index.in | 95 |
| abstract_inverted_index.is | 6, 19 |
| abstract_inverted_index.it | 37 |
| abstract_inverted_index.of | 14, 57 |
| abstract_inverted_index.on | 3, 185, 189, 218 |
| abstract_inverted_index.to | 92, 136 |
| abstract_inverted_index.we | 101 |
| abstract_inverted_index.(i) | 63, 122 |
| abstract_inverted_index.AMD | 191 |
| abstract_inverted_index.CPU | 209 |
| abstract_inverted_index.HDC | 46, 111 |
| abstract_inverted_index.and | 87, 169, 201 |
| abstract_inverted_index.due | 91 |
| abstract_inverted_index.for | 8, 39, 48, 109, 146, 227 |
| abstract_inverted_index.key | 120 |
| abstract_inverted_index.low | 165 |
| abstract_inverted_index.the | 74, 104, 115 |
| abstract_inverted_index.via | 51, 69 |
| abstract_inverted_index.(ii) | 72, 142 |
| abstract_inverted_index.(iv) | 88, 170 |
| abstract_inverted_index.Edge | 55 |
| abstract_inverted_index.FPGA | 107 |
| abstract_inverted_index.NysX | 117, 196 |
| abstract_inverted_index.SpMV | 172 |
| abstract_inverted_index.Zynq | 192 |
| abstract_inverted_index.edge | 4, 41 |
| abstract_inverted_index.four | 119 |
| abstract_inverted_index.into | 28 |
| abstract_inverted_index.load | 89, 176 |
| abstract_inverted_index.over | 207 |
| abstract_inverted_index.such | 58 |
| abstract_inverted_index.that | 24 |
| abstract_inverted_index.used | 225 |
| abstract_inverted_index.with | 32, 131, 164, 174 |
| abstract_inverted_index.work | 44 |
| abstract_inverted_index.(GPU) | 210 |
| abstract_inverted_index.(HDC) | 18 |
| abstract_inverted_index.(iii) | 82, 155 |
| abstract_inverted_index.FPGA, | 195 |
| abstract_inverted_index.NysX, | 103 |
| abstract_inverted_index.SpMV. | 96 |
| abstract_inverted_index.among | 65 |
| abstract_inverted_index.edge. | 116 |
| abstract_inverted_index.faces | 60 |
| abstract_inverted_index.first | 105 |
| abstract_inverted_index.gains | 206 |
| abstract_inverted_index.graph | 9, 49, 112, 228 |
| abstract_inverted_index.input | 26 |
| abstract_inverted_index.point | 133 |
| abstract_inverted_index.range | 13 |
| abstract_inverted_index.these | 99, 179 |
| abstract_inverted_index.under | 78 |
| abstract_inverted_index.while | 139, 212 |
| abstract_inverted_index.$O(1)$ | 161 |
| abstract_inverted_index.(DPPs) | 135 |
| abstract_inverted_index.Recent | 43 |
| abstract_inverted_index.across | 11, 220 |
| abstract_inverted_index.enable | 181 |
| abstract_inverted_index.energy | 204 |
| abstract_inverted_index.engine | 159 |
| abstract_inverted_index.hybrid | 124 |
| abstract_inverted_index.kernel | 53 |
| abstract_inverted_index.lookup | 158 |
| abstract_inverted_index.making | 36 |
| abstract_inverted_index.matrix | 77, 149 |
| abstract_inverted_index.memory | 152, 167 |
| abstract_inverted_index.reduce | 137 |
| abstract_inverted_index.simple | 33 |
| abstract_inverted_index.static | 175 |
| abstract_inverted_index.widely | 224 |
| abstract_inverted_index.$3.4\%$ | 217 |
| abstract_inverted_index.address | 98 |
| abstract_inverted_index.average | 219 |
| abstract_inverted_index.devices | 5 |
| abstract_inverted_index.encodes | 25 |
| abstract_inverted_index.engines | 173 |
| abstract_inverted_index.limited | 79 |
| abstract_inverted_index.mapping | 163 |
| abstract_inverted_index.memory, | 81 |
| abstract_inverted_index.methods | 59 |
| abstract_inverted_index.on-chip | 80, 166 |
| abstract_inverted_index.propose | 102 |
| abstract_inverted_index.samples | 67 |
| abstract_inverted_index.several | 61 |
| abstract_inverted_index.speedup | 200 |
| abstract_inverted_index.storing | 73 |
| abstract_inverted_index.uniform | 70, 129 |
| abstract_inverted_index.vectors | 31 |
| abstract_inverted_index.(ZCU104) | 194 |
| abstract_inverted_index.Nyström | 52, 75, 147 |
| abstract_inverted_index.accuracy | 47, 215 |
| abstract_inverted_index.achieves | 197 |
| abstract_inverted_index.codebook | 85 |
| abstract_inverted_index.enabling | 160 |
| abstract_inverted_index.enhances | 45 |
| abstract_inverted_index.external | 151 |
| abstract_inverted_index.features | 27 |
| abstract_inverted_index.landmark | 125 |
| abstract_inverted_index.lookups, | 86 |
| abstract_inverted_index.paradigm | 23 |
| abstract_inverted_index.sampling | 130 |
| abstract_inverted_index.selected | 68 |
| abstract_inverted_index.sparsity | 94 |
| abstract_inverted_index.standard | 226 |
| abstract_inverted_index.strategy | 127 |
| abstract_inverted_index.Computing | 17 |
| abstract_inverted_index.TUDataset | 221 |
| abstract_inverted_index.Together, | 178 |
| abstract_inverted_index.accuracy; | 141 |
| abstract_inverted_index.bandwidth | 153 |
| abstract_inverted_index.combining | 128 |
| abstract_inverted_index.computing | 22 |
| abstract_inverted_index.essential | 7 |
| abstract_inverted_index.imbalance | 90 |
| abstract_inverted_index.improving | 140, 213 |
| abstract_inverted_index.inference | 2, 184 |
| abstract_inverted_index.irregular | 93 |
| abstract_inverted_index.optimized | 208 |
| abstract_inverted_index.overhead; | 168 |
| abstract_inverted_index.processes | 134 |
| abstract_inverted_index.sampling, | 71 |
| abstract_inverted_index.selection | 126 |
| abstract_inverted_index.streaming | 144 |
| abstract_inverted_index.(landmark) | 66 |
| abstract_inverted_index.Real-time, | 0 |
| abstract_inverted_index.balancing. | 177 |
| abstract_inverted_index.baselines, | 211 |
| abstract_inverted_index.efficiency | 205 |
| abstract_inverted_index.end-to-end | 106 |
| abstract_inverted_index.expensive, | 83 |
| abstract_inverted_index.integrates | 118 |
| abstract_inverted_index.maximizing | 150 |
| abstract_inverted_index.platforms. | 42, 187 |
| abstract_inverted_index.projection | 76, 148 |
| abstract_inverted_index.real-time, | 182 |
| abstract_inverted_index.redundancy | 64, 138 |
| abstract_inverted_index.$169\times$ | 202 |
| abstract_inverted_index.Implemented | 188 |
| abstract_inverted_index.UltraScale+ | 193 |
| abstract_inverted_index.accelerator | 108 |
| abstract_inverted_index.benchmarks, | 222 |
| abstract_inverted_index.challenges, | 100 |
| abstract_inverted_index.challenges: | 62 |
| abstract_inverted_index.innovations | 180 |
| abstract_inverted_index.operations, | 35 |
| abstract_inverted_index.well-suited | 38 |
| abstract_inverted_index.$6.85\times$ | 198 |
| abstract_inverted_index.acceleration | 56 |
| abstract_inverted_index.architecture | 145 |
| abstract_inverted_index.element-wise | 34 |
| abstract_inverted_index.key-to-index | 162 |
| abstract_inverted_index.utilization; | 154 |
| abstract_inverted_index.($314\times$) | 203 |
| abstract_inverted_index.applications. | 15 |
| abstract_inverted_index.determinantal | 132 |
| abstract_inverted_index.($4.32\times$) | 199 |
| abstract_inverted_index.Nyström-based | 110 |
| abstract_inverted_index.brain-inspired | 21 |
| abstract_inverted_index.classification | 10, 50, 113, 214 |
| abstract_inverted_index.low-precision, | 29 |
| abstract_inverted_index.optimizations: | 121 |
| abstract_inverted_index.sparsity-aware | 171 |
| abstract_inverted_index.approximations. | 54 |
| abstract_inverted_index.classification. | 229 |
| abstract_inverted_index.Hyperdimensional | 16 |
| abstract_inverted_index.contention-prone | 84 |
| abstract_inverted_index.energy-efficient | 1, 183 |
| abstract_inverted_index.high-dimensional | 30 |
| abstract_inverted_index.minimal-perfect-hash | 157 |
| abstract_inverted_index.resource-constrained | 40, 186 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.73785194 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |