Object Classification Utilizing Neuromorphic Proprioceptive Signals in Active Exploration: Validated on a Soft Anthropomorphic Hand Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/biorob60516.2024.10719855
Proprioception, a key sensory modality in haptic perception, plays a vital role in perceiving the 3D structure of objects by providing feedback on the position and movement of body parts. The restoration of proprioceptive sensation is crucial for enabling in-hand manipulation and natural control in the prosthetic hand. Despite its importance, proprioceptive sensation is relatively unexplored in an artificial system. In this work, we introduce a novel platform that integrates a soft anthropomorphic robot hand (QB SoftHand) with flexible proprioceptive sensors and a classifier that utilizes a hybrid spiking neural network with different types of spiking neurons to interpret neuromorphic proprioceptive signals encoded by a biological muscle spindle model. The encoding scheme and the classifier are implemented and tested on the datasets we collected in the active exploration of ten objects from the YCB benchmark. Our results indicate that the classifier achieves more accurate inferences than existing learning approaches, especially in the early stage of the exploration. This system holds the potential for development in the areas of haptic feedback and neural prosthetics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.1109/biorob60516.2024.10719855
- OA Status
- green
- Cited By
- 1
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403677799
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403677799Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/biorob60516.2024.10719855Digital Object Identifier
- Title
-
Object Classification Utilizing Neuromorphic Proprioceptive Signals in Active Exploration: Validated on a Soft Anthropomorphic HandWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-01Full publication date if available
- Authors
-
Fengyi Wang, Hyeonggeun Yu, Nitish V. Thakor, Gordon ChengList of authors in order
- Landing page
-
https://doi.org/10.1109/biorob60516.2024.10719855Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.17738Direct OA link when available
- Concepts
-
Neuromorphic engineering, Computer science, Artificial intelligence, Object (grammar), Soft computing, Computer vision, Proprioception, Soft robotics, Artificial neural network, Physical medicine and rehabilitation, Robot, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403677799 |
|---|---|
| doi | https://doi.org/10.1109/biorob60516.2024.10719855 |
| ids.doi | https://doi.org/10.1109/biorob60516.2024.10719855 |
| ids.openalex | https://openalex.org/W4403677799 |
| fwci | 0.70280056 |
| type | article |
| title | Object Classification Utilizing Neuromorphic Proprioceptive Signals in Active Exploration: Validated on a Soft Anthropomorphic Hand |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 906 |
| biblio.first_page | 901 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.8575999736785889 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C151927369 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7832378149032593 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1981312 |
| concepts[0].display_name | Neuromorphic engineering |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6975418925285339 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5591104626655579 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2781238097 |
| concepts[3].level | 2 |
| concepts[3].score | 0.539671778678894 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[3].display_name | Object (grammar) |
| concepts[4].id | https://openalex.org/C140073362 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4860992431640625 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q738759 |
| concepts[4].display_name | Soft computing |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46703171730041504 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C171790689 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46517372131347656 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1129066 |
| concepts[6].display_name | Proprioception |
| concepts[7].id | https://openalex.org/C2776058767 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4546048045158386 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q24327151 |
| concepts[7].display_name | Soft robotics |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.24961262941360474 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C99508421 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15842226147651672 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[9].display_name | Physical medicine and rehabilitation |
| concepts[10].id | https://openalex.org/C90509273 |
| concepts[10].level | 2 |
| concepts[10].score | 0.10307428240776062 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[10].display_name | Robot |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.07877656817436218 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/neuromorphic-engineering |
| keywords[0].score | 0.7832378149032593 |
| keywords[0].display_name | Neuromorphic engineering |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6975418925285339 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5591104626655579 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/object |
| keywords[3].score | 0.539671778678894 |
| keywords[3].display_name | Object (grammar) |
| keywords[4].id | https://openalex.org/keywords/soft-computing |
| keywords[4].score | 0.4860992431640625 |
| keywords[4].display_name | Soft computing |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.46703171730041504 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/proprioception |
| keywords[6].score | 0.46517372131347656 |
| keywords[6].display_name | Proprioception |
| keywords[7].id | https://openalex.org/keywords/soft-robotics |
| keywords[7].score | 0.4546048045158386 |
| keywords[7].display_name | Soft robotics |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.24961262941360474 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[9].score | 0.15842226147651672 |
| keywords[9].display_name | Physical medicine and rehabilitation |
| keywords[10].id | https://openalex.org/keywords/robot |
| keywords[10].score | 0.10307428240776062 |
| keywords[10].display_name | Robot |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.07877656817436218 |
| keywords[11].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1109/biorob60516.2024.10719855 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) |
| locations[0].landing_page_url | http://doi.org/10.1109/biorob60516.2024.10719855 |
| locations[1].id | pmh:oai:arXiv.org:2505.17738 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | https://arxiv.org/pdf/2505.17738 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2505.17738 |
| locations[2].id | pmh:oai:mediatum.ub.tum.de:node/1765445 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400453 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | mediaTUM – the media and publications repository of the Technical University Munich (Technical University Munich) |
| locations[2].source.host_organization | https://openalex.org/I62916508 |
| locations[2].source.host_organization_name | Technical University of Munich |
| locations[2].source.host_organization_lineage | https://openalex.org/I62916508 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | ConferencePaper |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://mediatum.ub.tum.de/1765445 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5038349451 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0306-8601 |
| authorships[0].author.display_name | Fengyi Wang |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Cognitive Systems, Technical, University of Munich,Munich,Germany,80333 |
| authorships[0].institutions[0].id | https://openalex.org/I62916508 |
| authorships[0].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Technical University of Munich |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fengyi Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute for Cognitive Systems, Technical, University of Munich,Munich,Germany,80333 |
| authorships[1].author.id | https://openalex.org/A5032589103 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9125-1320 |
| authorships[1].author.display_name | Hyeonggeun Yu |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Cognitive Systems, Technical, University of Munich,Munich,Germany,80333 |
| authorships[1].institutions[0].id | https://openalex.org/I62916508 |
| authorships[1].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technical University of Munich |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiangyu Fu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute for Cognitive Systems, Technical, University of Munich,Munich,Germany,80333 |
| authorships[2].author.id | https://openalex.org/A5088964967 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9981-9395 |
| authorships[2].author.display_name | Nitish V. Thakor |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[2].affiliations[0].raw_affiliation_string | Johns Hopkins University,Department of Biomedical Engineering,Baltimore,MD,USA |
| authorships[2].institutions[0].id | https://openalex.org/I145311948 |
| authorships[2].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Johns Hopkins University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nitish Thakor |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Johns Hopkins University,Department of Biomedical Engineering,Baltimore,MD,USA |
| authorships[3].author.id | https://openalex.org/A5048975019 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0770-8717 |
| authorships[3].author.display_name | Gordon Cheng |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute for Cognitive Systems, Technical, University of Munich,Munich,Germany,80333 |
| authorships[3].institutions[0].id | https://openalex.org/I62916508 |
| authorships[3].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Technical University of Munich |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Gordon Cheng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute for Cognitive Systems, Technical, University of Munich,Munich,Germany,80333 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.17738 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Object Classification Utilizing Neuromorphic Proprioceptive Signals in Active Exploration: Validated on a Soft Anthropomorphic Hand |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.8575999736785889 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2986579802, https://openalex.org/W3108691306, https://openalex.org/W4389237622, https://openalex.org/W4385753159, https://openalex.org/W4200152843, https://openalex.org/W4214914769, https://openalex.org/W4387251107, https://openalex.org/W2166309310, https://openalex.org/W4317717548, https://openalex.org/W4297621941 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.17738 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.17738 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.17738 |
| primary_location.id | doi:10.1109/biorob60516.2024.10719855 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob) |
| primary_location.landing_page_url | http://doi.org/10.1109/biorob60516.2024.10719855 |
| publication_date | 2024-09-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1972265563, https://openalex.org/W2034838127, https://openalex.org/W2134835323, https://openalex.org/W1967993404, https://openalex.org/W2296426322, https://openalex.org/W2809670021, https://openalex.org/W3214253320, https://openalex.org/W2164575107, https://openalex.org/W2073706923, https://openalex.org/W2978616505, https://openalex.org/W3102486441, https://openalex.org/W3088583151, https://openalex.org/W2064334717, https://openalex.org/W2094721746, https://openalex.org/W2812031262, https://openalex.org/W3129361270, https://openalex.org/W123053168, https://openalex.org/W2064815751, https://openalex.org/W2624684459, https://openalex.org/W2124834326, https://openalex.org/W4311760592, https://openalex.org/W3132432794, https://openalex.org/W2162445001, https://openalex.org/W2006581331, https://openalex.org/W2064675550 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 1, 9, 65, 70, 82, 86, 104 |
| abstract_inverted_index.3D | 15 |
| abstract_inverted_index.In | 60 |
| abstract_inverted_index.an | 57 |
| abstract_inverted_index.by | 19, 103 |
| abstract_inverted_index.in | 5, 12, 44, 56, 124, 150, 164 |
| abstract_inverted_index.is | 35, 53 |
| abstract_inverted_index.of | 17, 27, 32, 94, 128, 154, 167 |
| abstract_inverted_index.on | 22, 119 |
| abstract_inverted_index.to | 97 |
| abstract_inverted_index.we | 63, 122 |
| abstract_inverted_index.(QB | 75 |
| abstract_inverted_index.Our | 135 |
| abstract_inverted_index.The | 30, 109 |
| abstract_inverted_index.YCB | 133 |
| abstract_inverted_index.and | 25, 41, 81, 112, 117, 170 |
| abstract_inverted_index.are | 115 |
| abstract_inverted_index.for | 37, 162 |
| abstract_inverted_index.its | 49 |
| abstract_inverted_index.key | 2 |
| abstract_inverted_index.ten | 129 |
| abstract_inverted_index.the | 14, 23, 45, 113, 120, 125, 132, 139, 151, 155, 160, 165 |
| abstract_inverted_index.This | 157 |
| abstract_inverted_index.body | 28 |
| abstract_inverted_index.from | 131 |
| abstract_inverted_index.hand | 74 |
| abstract_inverted_index.more | 142 |
| abstract_inverted_index.role | 11 |
| abstract_inverted_index.soft | 71 |
| abstract_inverted_index.than | 145 |
| abstract_inverted_index.that | 68, 84, 138 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.with | 77, 91 |
| abstract_inverted_index.areas | 166 |
| abstract_inverted_index.early | 152 |
| abstract_inverted_index.hand. | 47 |
| abstract_inverted_index.holds | 159 |
| abstract_inverted_index.novel | 66 |
| abstract_inverted_index.plays | 8 |
| abstract_inverted_index.robot | 73 |
| abstract_inverted_index.stage | 153 |
| abstract_inverted_index.types | 93 |
| abstract_inverted_index.vital | 10 |
| abstract_inverted_index.work, | 62 |
| abstract_inverted_index.active | 126 |
| abstract_inverted_index.haptic | 6, 168 |
| abstract_inverted_index.hybrid | 87 |
| abstract_inverted_index.model. | 108 |
| abstract_inverted_index.muscle | 106 |
| abstract_inverted_index.neural | 89, 171 |
| abstract_inverted_index.parts. | 29 |
| abstract_inverted_index.scheme | 111 |
| abstract_inverted_index.system | 158 |
| abstract_inverted_index.tested | 118 |
| abstract_inverted_index.Despite | 48 |
| abstract_inverted_index.control | 43 |
| abstract_inverted_index.crucial | 36 |
| abstract_inverted_index.encoded | 102 |
| abstract_inverted_index.in-hand | 39 |
| abstract_inverted_index.natural | 42 |
| abstract_inverted_index.network | 90 |
| abstract_inverted_index.neurons | 96 |
| abstract_inverted_index.objects | 18, 130 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.sensors | 80 |
| abstract_inverted_index.sensory | 3 |
| abstract_inverted_index.signals | 101 |
| abstract_inverted_index.spiking | 88, 95 |
| abstract_inverted_index.spindle | 107 |
| abstract_inverted_index.system. | 59 |
| abstract_inverted_index.accurate | 143 |
| abstract_inverted_index.achieves | 141 |
| abstract_inverted_index.datasets | 121 |
| abstract_inverted_index.enabling | 38 |
| abstract_inverted_index.encoding | 110 |
| abstract_inverted_index.existing | 146 |
| abstract_inverted_index.feedback | 21, 169 |
| abstract_inverted_index.flexible | 78 |
| abstract_inverted_index.indicate | 137 |
| abstract_inverted_index.learning | 147 |
| abstract_inverted_index.modality | 4 |
| abstract_inverted_index.movement | 26 |
| abstract_inverted_index.platform | 67 |
| abstract_inverted_index.position | 24 |
| abstract_inverted_index.utilizes | 85 |
| abstract_inverted_index.SoftHand) | 76 |
| abstract_inverted_index.collected | 123 |
| abstract_inverted_index.different | 92 |
| abstract_inverted_index.interpret | 98 |
| abstract_inverted_index.introduce | 64 |
| abstract_inverted_index.potential | 161 |
| abstract_inverted_index.providing | 20 |
| abstract_inverted_index.sensation | 34, 52 |
| abstract_inverted_index.structure | 16 |
| abstract_inverted_index.artificial | 58 |
| abstract_inverted_index.benchmark. | 134 |
| abstract_inverted_index.biological | 105 |
| abstract_inverted_index.classifier | 83, 114, 140 |
| abstract_inverted_index.especially | 149 |
| abstract_inverted_index.inferences | 144 |
| abstract_inverted_index.integrates | 69 |
| abstract_inverted_index.perceiving | 13 |
| abstract_inverted_index.prosthetic | 46 |
| abstract_inverted_index.relatively | 54 |
| abstract_inverted_index.unexplored | 55 |
| abstract_inverted_index.approaches, | 148 |
| abstract_inverted_index.development | 163 |
| abstract_inverted_index.exploration | 127 |
| abstract_inverted_index.implemented | 116 |
| abstract_inverted_index.importance, | 50 |
| abstract_inverted_index.perception, | 7 |
| abstract_inverted_index.restoration | 31 |
| abstract_inverted_index.exploration. | 156 |
| abstract_inverted_index.manipulation | 40 |
| abstract_inverted_index.neuromorphic | 99 |
| abstract_inverted_index.prosthetics. | 172 |
| abstract_inverted_index.proprioceptive | 33, 51, 79, 100 |
| abstract_inverted_index.Proprioception, | 0 |
| abstract_inverted_index.anthropomorphic | 72 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.65336834 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |