Object Detection Based on Swin Deformable Transformer‐BiPAFPN‐YOLOX Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1155/2023/4228610
Object detection technology plays a crucial role in people’s everyday lives, as well as enterprise production and modern national defense. Most current object detection networks, such as YOLOX, employ convolutional neural networks instead of a Transformer as a backbone. However, these techniques lack a global understanding of the images and may lose meaningful information, such as the precise location of the most active feature detector. Recently, a Transformer with larger receptive fields showed superior performance to corresponding convolutional neural networks in computer vision tasks. The Transformer splits the image into patches and subsequently feeds them to the Transformer in a sequence structure similar to word embeddings. This makes it capable of global modeling of entire images and implies global understanding of images. However, simply using a Transformer with a larger receptive field raises several concerns. For example, self‐attention in the Swin Transformer backbone will limit its ability to model long range relations, resulting in poor feature extraction results and low convergence speed during training. To address the above problems, first, we propose an important region‐based Reconstructed Deformable Self‐Attention that shifts attention to important regions for efficient global modeling. Second, based on the Reconstructed Deformable Self‐Attention, we propose the Swin Deformable Transformer backbone, which improves the feature extraction ability and convergence speed. Finally, based on the Swin Deformable Transformer backbone, we propose a novel object detection network, namely, Swin Deformable Transformer‐BiPAFPN‐YOLOX. experimental results on the COCO dataset show that the training period is reduced by 55.4%, average precision is increased by 2.4%, average precision of small objects is increased by 3.7%, and inference speed is increased by 35%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2023/4228610
- https://downloads.hindawi.com/journals/cin/2023/4228610.pdf
- OA Status
- hybrid
- Cited By
- 11
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4323655432
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4323655432Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2023/4228610Digital Object Identifier
- Title
-
Object Detection Based on Swin Deformable Transformer‐BiPAFPN‐YOLOXWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Peicheng Shi, Xinhe Chen, Heng Qi, Chenghui Zhang, Zhi-Qiang LiuList of authors in order
- Landing page
-
https://doi.org/10.1155/2023/4228610Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/cin/2023/4228610.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/cin/2023/4228610.pdfDirect OA link when available
- Concepts
-
Computer science, Transformer, Artificial intelligence, Convolutional neural network, Object detection, Feature extraction, Computer vision, Pattern recognition (psychology), Detector, Receptive field, Voltage, Engineering, Telecommunications, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3, 2023: 5Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4323655432 |
|---|---|
| doi | https://doi.org/10.1155/2023/4228610 |
| ids.doi | https://doi.org/10.1155/2023/4228610 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36936669 |
| ids.openalex | https://openalex.org/W4323655432 |
| fwci | 2.00165174 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D011211 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Electric Power Supplies |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016571 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Neural Networks, Computer |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D013672 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Technology |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D011211 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Electric Power Supplies |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016571 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Neural Networks, Computer |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D013672 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Technology |
| type | article |
| title | Object Detection Based on Swin Deformable Transformer‐BiPAFPN‐YOLOX |
| awards[0].id | https://openalex.org/G945863755 |
| awards[0].funder_id | https://openalex.org/F4320334897 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2208085MF173 |
| awards[0].funder_display_name | Natural Science Foundation of Anhui Province |
| awards[1].id | https://openalex.org/G2653283754 |
| awards[1].funder_id | https://openalex.org/F4320336578 |
| awards[1].display_name | |
| awards[1].funder_award_id | 202104a05020003 |
| awards[1].funder_display_name | Anhui Provincial Key Research and Development Plan |
| awards[2].id | https://openalex.org/G1804167035 |
| awards[2].funder_id | https://openalex.org/F4320326665 |
| awards[2].display_name | |
| awards[2].funder_award_id | [2020]479 |
| awards[2].funder_display_name | Anhui Provincial Development and Reform Commission |
| biblio.issue | 1 |
| biblio.volume | 2023 |
| biblio.last_page | 4228610 |
| biblio.first_page | 4228610 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T12111 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.983299970626831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Industrial Vision Systems and Defect Detection |
| funders[0].id | https://openalex.org/F4320326665 |
| funders[0].ror | https://ror.org/01jxa2z23 |
| funders[0].display_name | Anhui Provincial Development and Reform Commission |
| funders[1].id | https://openalex.org/F4320334897 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Anhui Province |
| funders[2].id | https://openalex.org/F4320336578 |
| funders[2].ror | |
| funders[2].display_name | Anhui Provincial Key Research and Development Plan |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7139807343482971 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6782928109169006 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6153154373168945 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5399314165115356 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C2776151529 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5020749568939209 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[4].display_name | Object detection |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.455351859331131 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4457660913467407 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4175727367401123 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C94915269 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4119637906551361 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[8].display_name | Detector |
| concepts[9].id | https://openalex.org/C19071747 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4108502268791199 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1755207 |
| concepts[9].display_name | Receptive field |
| concepts[10].id | https://openalex.org/C165801399 |
| concepts[10].level | 2 |
| concepts[10].score | 0.23225775361061096 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[10].display_name | Voltage |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09409323334693909 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07755464315414429 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.07115915417671204 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7139807343482971 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.6782928109169006 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6153154373168945 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5399314165115356 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/object-detection |
| keywords[4].score | 0.5020749568939209 |
| keywords[4].display_name | Object detection |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.455351859331131 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.4457660913467407 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4175727367401123 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/detector |
| keywords[8].score | 0.4119637906551361 |
| keywords[8].display_name | Detector |
| keywords[9].id | https://openalex.org/keywords/receptive-field |
| keywords[9].score | 0.4108502268791199 |
| keywords[9].display_name | Receptive field |
| keywords[10].id | https://openalex.org/keywords/voltage |
| keywords[10].score | 0.23225775361061096 |
| keywords[10].display_name | Voltage |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.09409323334693909 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.07755464315414429 |
| keywords[12].display_name | Telecommunications |
| keywords[13].id | https://openalex.org/keywords/electrical-engineering |
| keywords[13].score | 0.07115915417671204 |
| keywords[13].display_name | Electrical engineering |
| language | en |
| locations[0].id | doi:10.1155/2023/4228610 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S72372694 |
| locations[0].source.issn | 1687-5265, 1687-5273 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1687-5265 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computational Intelligence and Neuroscience |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/cin/2023/4228610.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computational Intelligence and Neuroscience |
| locations[0].landing_page_url | https://doi.org/10.1155/2023/4228610 |
| locations[1].id | pmid:36936669 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Computational intelligence and neuroscience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36936669 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10019960 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10019960/pdf/CIN2023-4228610.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Comput Intell Neurosci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10019960 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5046985719 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1533-8154 |
| authorships[0].author.display_name | Peicheng Shi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000 |
| authorships[0].institutions[0].id | https://openalex.org/I70908550 |
| authorships[0].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui Polytechnic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peicheng Shi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000 |
| authorships[1].author.id | https://openalex.org/A5044931100 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-3176-7335 |
| authorships[1].author.display_name | Xinhe Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000 |
| authorships[1].institutions[0].id | https://openalex.org/I70908550 |
| authorships[1].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui Polytechnic University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinhe Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000 |
| authorships[2].author.id | https://openalex.org/A5009721481 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6930-5898 |
| authorships[2].author.display_name | Heng Qi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000 |
| authorships[2].institutions[0].id | https://openalex.org/I70908550 |
| authorships[2].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui Polytechnic University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Heng Qi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000 |
| authorships[3].author.id | https://openalex.org/A5100641479 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2317-5930 |
| authorships[3].author.display_name | Chenghui Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000 |
| authorships[3].institutions[0].id | https://openalex.org/I70908550 |
| authorships[3].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Anhui Polytechnic University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chenghui Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000 |
| authorships[4].author.id | https://openalex.org/A5100415093 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1883-2871 |
| authorships[4].author.display_name | Zhi-Qiang Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000 |
| authorships[4].institutions[0].id | https://openalex.org/I70908550 |
| authorships[4].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Anhui Polytechnic University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhiqiang Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu 241000 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/cin/2023/4228610.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Object Detection Based on Swin Deformable Transformer‐BiPAFPN‐YOLOX |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2089544495, https://openalex.org/W2079003682, https://openalex.org/W1555021777, https://openalex.org/W2913266608, https://openalex.org/W1964918325, https://openalex.org/W2799648451, https://openalex.org/W2189496153, https://openalex.org/W2186491718, https://openalex.org/W2969228573, https://openalex.org/W2963690996 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1155/2023/4228610 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S72372694 |
| best_oa_location.source.issn | 1687-5265, 1687-5273 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1687-5265 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computational Intelligence and Neuroscience |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/cin/2023/4228610.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computational Intelligence and Neuroscience |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2023/4228610 |
| primary_location.id | doi:10.1155/2023/4228610 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S72372694 |
| primary_location.source.issn | 1687-5265, 1687-5273 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1687-5265 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computational Intelligence and Neuroscience |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/cin/2023/4228610.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computational Intelligence and Neuroscience |
| primary_location.landing_page_url | https://doi.org/10.1155/2023/4228610 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3042011474, https://openalex.org/W6739901393, https://openalex.org/W3096609285, https://openalex.org/W3189898414, https://openalex.org/W3143320354, https://openalex.org/W4313007769, https://openalex.org/W3175515048, https://openalex.org/W3139633126, https://openalex.org/W3131500599, https://openalex.org/W4312960790, https://openalex.org/W3138516171, https://openalex.org/W4312349930, https://openalex.org/W2601564443, https://openalex.org/W2966926453, https://openalex.org/W2963857746, https://openalex.org/W3034971973, https://openalex.org/W2163605009, https://openalex.org/W3203160579, https://openalex.org/W2549139847, https://openalex.org/W2982083293, https://openalex.org/W3089728331, https://openalex.org/W4214493665, https://openalex.org/W3134144764, https://openalex.org/W3209970085, https://openalex.org/W3157528469, https://openalex.org/W2565639579, https://openalex.org/W2964444661, https://openalex.org/W2613718673, https://openalex.org/W2570343428, https://openalex.org/W3035694605, https://openalex.org/W6639102338, https://openalex.org/W2964121718, https://openalex.org/W2982220924, https://openalex.org/W3035253074, https://openalex.org/W4385245566, https://openalex.org/W639708223, https://openalex.org/W3169064633, https://openalex.org/W1861492603, https://openalex.org/W3211783547 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 4, 34, 37, 43, 66, 99, 125, 128, 221 |
| abstract_inverted_index.To | 164 |
| abstract_inverted_index.an | 172 |
| abstract_inverted_index.as | 11, 13, 26, 36, 55 |
| abstract_inverted_index.by | 243, 249, 258, 265 |
| abstract_inverted_index.in | 7, 80, 98, 138, 153 |
| abstract_inverted_index.is | 241, 247, 256, 263 |
| abstract_inverted_index.it | 108 |
| abstract_inverted_index.of | 33, 46, 59, 110, 113, 120, 253 |
| abstract_inverted_index.on | 190, 213, 232 |
| abstract_inverted_index.to | 75, 95, 103, 147, 181 |
| abstract_inverted_index.we | 170, 195, 219 |
| abstract_inverted_index.For | 135 |
| abstract_inverted_index.The | 84 |
| abstract_inverted_index.and | 16, 49, 91, 116, 158, 208, 260 |
| abstract_inverted_index.for | 184 |
| abstract_inverted_index.its | 145 |
| abstract_inverted_index.low | 159 |
| abstract_inverted_index.may | 50 |
| abstract_inverted_index.the | 47, 56, 60, 87, 96, 139, 166, 191, 197, 204, 214, 233, 238 |
| abstract_inverted_index.35%. | 266 |
| abstract_inverted_index.COCO | 234 |
| abstract_inverted_index.Most | 20 |
| abstract_inverted_index.Swin | 140, 198, 215, 227 |
| abstract_inverted_index.This | 106 |
| abstract_inverted_index.into | 89 |
| abstract_inverted_index.lack | 42 |
| abstract_inverted_index.long | 149 |
| abstract_inverted_index.lose | 51 |
| abstract_inverted_index.most | 61 |
| abstract_inverted_index.poor | 154 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.show | 236 |
| abstract_inverted_index.such | 25, 54 |
| abstract_inverted_index.that | 178, 237 |
| abstract_inverted_index.them | 94 |
| abstract_inverted_index.well | 12 |
| abstract_inverted_index.will | 143 |
| abstract_inverted_index.with | 68, 127 |
| abstract_inverted_index.word | 104 |
| abstract_inverted_index.2.4%, | 250 |
| abstract_inverted_index.3.7%, | 259 |
| abstract_inverted_index.above | 167 |
| abstract_inverted_index.based | 189, 212 |
| abstract_inverted_index.feeds | 93 |
| abstract_inverted_index.field | 131 |
| abstract_inverted_index.image | 88 |
| abstract_inverted_index.limit | 144 |
| abstract_inverted_index.makes | 107 |
| abstract_inverted_index.model | 148 |
| abstract_inverted_index.novel | 222 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.range | 150 |
| abstract_inverted_index.small | 254 |
| abstract_inverted_index.speed | 161, 262 |
| abstract_inverted_index.these | 40 |
| abstract_inverted_index.using | 124 |
| abstract_inverted_index.which | 202 |
| abstract_inverted_index.55.4%, | 244 |
| abstract_inverted_index.Object | 0 |
| abstract_inverted_index.YOLOX, | 27 |
| abstract_inverted_index.active | 62 |
| abstract_inverted_index.during | 162 |
| abstract_inverted_index.employ | 28 |
| abstract_inverted_index.entire | 114 |
| abstract_inverted_index.fields | 71 |
| abstract_inverted_index.first, | 169 |
| abstract_inverted_index.global | 44, 111, 118, 186 |
| abstract_inverted_index.images | 48, 115 |
| abstract_inverted_index.larger | 69, 129 |
| abstract_inverted_index.lives, | 10 |
| abstract_inverted_index.modern | 17 |
| abstract_inverted_index.neural | 30, 78 |
| abstract_inverted_index.object | 22, 223 |
| abstract_inverted_index.period | 240 |
| abstract_inverted_index.raises | 132 |
| abstract_inverted_index.shifts | 179 |
| abstract_inverted_index.showed | 72 |
| abstract_inverted_index.simply | 123 |
| abstract_inverted_index.speed. | 210 |
| abstract_inverted_index.splits | 86 |
| abstract_inverted_index.tasks. | 83 |
| abstract_inverted_index.vision | 82 |
| abstract_inverted_index.Second, | 188 |
| abstract_inverted_index.ability | 146, 207 |
| abstract_inverted_index.address | 165 |
| abstract_inverted_index.average | 245, 251 |
| abstract_inverted_index.capable | 109 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.current | 21 |
| abstract_inverted_index.dataset | 235 |
| abstract_inverted_index.feature | 63, 155, 205 |
| abstract_inverted_index.images. | 121 |
| abstract_inverted_index.implies | 117 |
| abstract_inverted_index.instead | 32 |
| abstract_inverted_index.namely, | 226 |
| abstract_inverted_index.objects | 255 |
| abstract_inverted_index.patches | 90 |
| abstract_inverted_index.precise | 57 |
| abstract_inverted_index.propose | 171, 196, 220 |
| abstract_inverted_index.reduced | 242 |
| abstract_inverted_index.regions | 183 |
| abstract_inverted_index.results | 157, 231 |
| abstract_inverted_index.several | 133 |
| abstract_inverted_index.similar | 102 |
| abstract_inverted_index.Finally, | 211 |
| abstract_inverted_index.However, | 39, 122 |
| abstract_inverted_index.backbone | 142 |
| abstract_inverted_index.computer | 81 |
| abstract_inverted_index.defense. | 19 |
| abstract_inverted_index.everyday | 9 |
| abstract_inverted_index.example, | 136 |
| abstract_inverted_index.improves | 203 |
| abstract_inverted_index.location | 58 |
| abstract_inverted_index.modeling | 112 |
| abstract_inverted_index.national | 18 |
| abstract_inverted_index.network, | 225 |
| abstract_inverted_index.networks | 31, 79 |
| abstract_inverted_index.sequence | 100 |
| abstract_inverted_index.superior | 73 |
| abstract_inverted_index.training | 239 |
| abstract_inverted_index.Recently, | 65 |
| abstract_inverted_index.attention | 180 |
| abstract_inverted_index.backbone, | 201, 218 |
| abstract_inverted_index.backbone. | 38 |
| abstract_inverted_index.concerns. | 134 |
| abstract_inverted_index.detection | 1, 23, 224 |
| abstract_inverted_index.detector. | 64 |
| abstract_inverted_index.efficient | 185 |
| abstract_inverted_index.important | 173, 182 |
| abstract_inverted_index.increased | 248, 257, 264 |
| abstract_inverted_index.inference | 261 |
| abstract_inverted_index.modeling. | 187 |
| abstract_inverted_index.networks, | 24 |
| abstract_inverted_index.precision | 246, 252 |
| abstract_inverted_index.problems, | 168 |
| abstract_inverted_index.receptive | 70, 130 |
| abstract_inverted_index.resulting | 152 |
| abstract_inverted_index.structure | 101 |
| abstract_inverted_index.training. | 163 |
| abstract_inverted_index.Deformable | 176, 193, 199, 216, 228 |
| abstract_inverted_index.enterprise | 14 |
| abstract_inverted_index.extraction | 156, 206 |
| abstract_inverted_index.meaningful | 52 |
| abstract_inverted_index.people’s | 8 |
| abstract_inverted_index.production | 15 |
| abstract_inverted_index.relations, | 151 |
| abstract_inverted_index.techniques | 41 |
| abstract_inverted_index.technology | 2 |
| abstract_inverted_index.Transformer | 35, 67, 85, 97, 126, 141, 200, 217 |
| abstract_inverted_index.convergence | 160, 209 |
| abstract_inverted_index.embeddings. | 105 |
| abstract_inverted_index.performance | 74 |
| abstract_inverted_index.experimental | 230 |
| abstract_inverted_index.information, | 53 |
| abstract_inverted_index.subsequently | 92 |
| abstract_inverted_index.Reconstructed | 175, 192 |
| abstract_inverted_index.convolutional | 29, 77 |
| abstract_inverted_index.corresponding | 76 |
| abstract_inverted_index.understanding | 45, 119 |
| abstract_inverted_index.region‐based | 174 |
| abstract_inverted_index.Self‐Attention | 177 |
| abstract_inverted_index.self‐attention | 137 |
| abstract_inverted_index.Self‐Attention, | 194 |
| abstract_inverted_index.Transformer‐BiPAFPN‐YOLOX. | 229 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5046985719 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I70908550 |
| citation_normalized_percentile.value | 0.85101048 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |