Object-level Correlation for Few-Shot Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.07917
Few-shot semantic segmentation (FSS) aims to segment objects of novel categories in the query images given only a few annotated support samples. Existing methods primarily build the image-level correlation between the support target object and the entire query image. However, this correlation contains the hard pixel noise, \textit{i.e.}, irrelevant background objects, that is intractable to trace and suppress, leading to the overfitting of the background. To address the limitation of this correlation, we imitate the biological vision process to identify novel objects in the object-level information. Target identification in the general objects is more valid than in the entire image, especially in the low-data regime. Inspired by this, we design an Object-level Correlation Network (OCNet) by establishing the object-level correlation between the support target object and query general objects, which is mainly composed of the General Object Mining Module (GOMM) and Correlation Construction Module (CCM). Specifically, GOMM constructs the query general object feature by learning saliency and high-level similarity cues, where the general objects include the irrelevant background objects and the target foreground object. Then, CCM establishes the object-level correlation by allocating the target prototypes to match the general object feature. The generated object-level correlation can mine the query target feature and suppress the hard pixel noise for the final prediction. Extensive experiments on PASCAL-${5}^{i}$ and COCO-${20}^{i}$ show that our model achieves the state-of-the-art performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.07917
- https://arxiv.org/pdf/2509.07917
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416068630
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416068630Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.07917Digital Object Identifier
- Title
-
Object-level Correlation for Few-Shot SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-09Full publication date if available
- Authors
-
Chunlin Wen, Yu Zhang, Jie Fan, Hongyuan Zhu, Xiu-Shen Wei, Yijun Wang, Zhiqiang Kou, Shuzhou SunList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.07917Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.07917Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.07917Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416068630 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.07917 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.07917 |
| ids.openalex | https://openalex.org/W4416068630 |
| fwci | |
| type | preprint |
| title | Object-level Correlation for Few-Shot Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.07917 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.07917 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.07917 |
| locations[1].id | doi:10.48550/arxiv.2509.07917 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.07917 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101319199 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-5329-196X |
| authorships[0].author.display_name | Chunlin Wen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wen, Chunlin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100678774 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-7730-8817 |
| authorships[1].author.display_name | Yu Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Yu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5045040746 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4330-6053 |
| authorships[2].author.display_name | Jie Fan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fan, Jie |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102483130 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hongyuan Zhu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhu, Hongyuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5066964304 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8200-1845 |
| authorships[4].author.display_name | Xiu-Shen Wei |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wei, Xiu-Shen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100713695 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8161-2150 |
| authorships[5].author.display_name | Yijun Wang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wang, Yijun |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5089186967 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3335-3959 |
| authorships[6].author.display_name | Zhiqiang Kou |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kou, Zhiqiang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5065503504 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6104-8046 |
| authorships[7].author.display_name | Shuzhou Sun |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Sun, Shuzhou |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.07917 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Object-level Correlation for Few-Shot Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:04:09.505741 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.07917 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.07917 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.07917 |
| primary_location.id | pmh:oai:arXiv.org:2509.07917 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.07917 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.07917 |
| publication_date | 2025-09-09 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17 |
| abstract_inverted_index.To | 65 |
| abstract_inverted_index.an | 110 |
| abstract_inverted_index.by | 106, 115, 153, 180 |
| abstract_inverted_index.in | 11, 82, 88, 96, 101 |
| abstract_inverted_index.is | 52, 92, 130 |
| abstract_inverted_index.of | 8, 62, 69, 133 |
| abstract_inverted_index.on | 213 |
| abstract_inverted_index.to | 5, 54, 59, 78, 185 |
| abstract_inverted_index.we | 72, 108 |
| abstract_inverted_index.CCM | 175 |
| abstract_inverted_index.The | 191 |
| abstract_inverted_index.and | 34, 56, 125, 140, 156, 169, 201, 215 |
| abstract_inverted_index.can | 195 |
| abstract_inverted_index.few | 18 |
| abstract_inverted_index.for | 207 |
| abstract_inverted_index.our | 219 |
| abstract_inverted_index.the | 12, 26, 30, 35, 43, 60, 63, 67, 74, 83, 89, 97, 102, 117, 121, 134, 148, 161, 165, 170, 177, 182, 187, 197, 203, 208, 222 |
| abstract_inverted_index.GOMM | 146 |
| abstract_inverted_index.aims | 4 |
| abstract_inverted_index.hard | 44, 204 |
| abstract_inverted_index.mine | 196 |
| abstract_inverted_index.more | 93 |
| abstract_inverted_index.only | 16 |
| abstract_inverted_index.show | 217 |
| abstract_inverted_index.than | 95 |
| abstract_inverted_index.that | 51, 218 |
| abstract_inverted_index.this | 40, 70 |
| abstract_inverted_index.(FSS) | 3 |
| abstract_inverted_index.Then, | 174 |
| abstract_inverted_index.build | 25 |
| abstract_inverted_index.cues, | 159 |
| abstract_inverted_index.final | 209 |
| abstract_inverted_index.given | 15 |
| abstract_inverted_index.match | 186 |
| abstract_inverted_index.model | 220 |
| abstract_inverted_index.noise | 206 |
| abstract_inverted_index.novel | 9, 80 |
| abstract_inverted_index.pixel | 45, 205 |
| abstract_inverted_index.query | 13, 37, 126, 149, 198 |
| abstract_inverted_index.this, | 107 |
| abstract_inverted_index.trace | 55 |
| abstract_inverted_index.valid | 94 |
| abstract_inverted_index.where | 160 |
| abstract_inverted_index.which | 129 |
| abstract_inverted_index.(CCM). | 144 |
| abstract_inverted_index.(GOMM) | 139 |
| abstract_inverted_index.Mining | 137 |
| abstract_inverted_index.Module | 138, 143 |
| abstract_inverted_index.Object | 136 |
| abstract_inverted_index.Target | 86 |
| abstract_inverted_index.design | 109 |
| abstract_inverted_index.entire | 36, 98 |
| abstract_inverted_index.image, | 99 |
| abstract_inverted_index.image. | 38 |
| abstract_inverted_index.images | 14 |
| abstract_inverted_index.mainly | 131 |
| abstract_inverted_index.noise, | 46 |
| abstract_inverted_index.object | 33, 124, 151, 189 |
| abstract_inverted_index.target | 32, 123, 171, 183, 199 |
| abstract_inverted_index.vision | 76 |
| abstract_inverted_index.(OCNet) | 114 |
| abstract_inverted_index.General | 135 |
| abstract_inverted_index.Network | 113 |
| abstract_inverted_index.address | 66 |
| abstract_inverted_index.between | 29, 120 |
| abstract_inverted_index.feature | 152, 200 |
| abstract_inverted_index.general | 90, 127, 150, 162, 188 |
| abstract_inverted_index.imitate | 73 |
| abstract_inverted_index.include | 164 |
| abstract_inverted_index.leading | 58 |
| abstract_inverted_index.methods | 23 |
| abstract_inverted_index.object. | 173 |
| abstract_inverted_index.objects | 7, 81, 91, 163, 168 |
| abstract_inverted_index.process | 77 |
| abstract_inverted_index.regime. | 104 |
| abstract_inverted_index.segment | 6 |
| abstract_inverted_index.support | 20, 31, 122 |
| abstract_inverted_index.Existing | 22 |
| abstract_inverted_index.Few-shot | 0 |
| abstract_inverted_index.However, | 39 |
| abstract_inverted_index.Inspired | 105 |
| abstract_inverted_index.achieves | 221 |
| abstract_inverted_index.composed | 132 |
| abstract_inverted_index.contains | 42 |
| abstract_inverted_index.feature. | 190 |
| abstract_inverted_index.identify | 79 |
| abstract_inverted_index.learning | 154 |
| abstract_inverted_index.low-data | 103 |
| abstract_inverted_index.objects, | 50, 128 |
| abstract_inverted_index.saliency | 155 |
| abstract_inverted_index.samples. | 21 |
| abstract_inverted_index.semantic | 1 |
| abstract_inverted_index.suppress | 202 |
| abstract_inverted_index.Extensive | 211 |
| abstract_inverted_index.annotated | 19 |
| abstract_inverted_index.generated | 192 |
| abstract_inverted_index.primarily | 24 |
| abstract_inverted_index.suppress, | 57 |
| abstract_inverted_index.allocating | 181 |
| abstract_inverted_index.background | 49, 167 |
| abstract_inverted_index.biological | 75 |
| abstract_inverted_index.categories | 10 |
| abstract_inverted_index.constructs | 147 |
| abstract_inverted_index.especially | 100 |
| abstract_inverted_index.foreground | 172 |
| abstract_inverted_index.high-level | 157 |
| abstract_inverted_index.irrelevant | 48, 166 |
| abstract_inverted_index.limitation | 68 |
| abstract_inverted_index.prototypes | 184 |
| abstract_inverted_index.similarity | 158 |
| abstract_inverted_index.Correlation | 112, 141 |
| abstract_inverted_index.background. | 64 |
| abstract_inverted_index.correlation | 28, 41, 119, 179, 194 |
| abstract_inverted_index.establishes | 176 |
| abstract_inverted_index.experiments | 212 |
| abstract_inverted_index.image-level | 27 |
| abstract_inverted_index.intractable | 53 |
| abstract_inverted_index.overfitting | 61 |
| abstract_inverted_index.prediction. | 210 |
| abstract_inverted_index.Construction | 142 |
| abstract_inverted_index.Object-level | 111 |
| abstract_inverted_index.correlation, | 71 |
| abstract_inverted_index.establishing | 116 |
| abstract_inverted_index.information. | 85 |
| abstract_inverted_index.object-level | 84, 118, 178, 193 |
| abstract_inverted_index.performance. | 224 |
| abstract_inverted_index.segmentation | 2 |
| abstract_inverted_index.Specifically, | 145 |
| abstract_inverted_index.\textit{i.e.}, | 47 |
| abstract_inverted_index.identification | 87 |
| abstract_inverted_index.COCO-${20}^{i}$ | 216 |
| abstract_inverted_index.PASCAL-${5}^{i}$ | 214 |
| abstract_inverted_index.state-of-the-art | 223 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |