Objective, Absolute and Hue-aware Metrics for Intrinsic Image Decomposition on Real-World Scenes: A Proof of Concept Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.19500
Intrinsic image decomposition (IID) is the task of separating an image into albedo and shade. In real-world scenes, it is difficult to quantitatively assess IID quality due to the unavailability of ground truth. The existing method provides the relative reflection intensities based on human-judged annotations. However, these annotations have challenges in subjectivity, relative evaluation, and hue non-assessment. To address these, we propose a concept of quantitative evaluation with a calculated albedo from a hyperspectral imaging and light detection and ranging (LiDAR) intensity. Additionally, we introduce an optional albedo densification approach based on spectral similarity. This paper conducted a concept verification in a laboratory environment, and suggested the feasibility of an objective, absolute, and hue-aware assessment. (This paper is accepted by IEEE ICIP 2025. )
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.19500
- https://arxiv.org/pdf/2505.19500
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414586494
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414586494Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.19500Digital Object Identifier
- Title
-
Objective, Absolute and Hue-aware Metrics for Intrinsic Image Decomposition on Real-World Scenes: A Proof of ConceptWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-26Full publication date if available
- Authors
-
Shogo Sato, Masaru Tsuchida, M. Yamaguchi, Takuhiro Kaneko, Kazuhiko Murasaki, Taiga Yoshida, Ryuichi TanidaList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.19500Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.19500Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.19500Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414586494 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.19500 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.19500 |
| ids.openalex | https://openalex.org/W4414586494 |
| fwci | |
| type | preprint |
| title | Objective, Absolute and Hue-aware Metrics for Intrinsic Image Decomposition on Real-World Scenes: A Proof of Concept |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.988099992275238 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T11105 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9815000295639038 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image Processing Techniques |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9783999919891357 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.19500 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.19500 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.19500 |
| locations[1].id | doi:10.48550/arxiv.2505.19500 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.19500 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5023557292 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2874-7072 |
| authorships[0].author.display_name | Shogo Sato |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sato, Shogo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5016288199 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-2125-1372 |
| authorships[1].author.display_name | Masaru Tsuchida |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tsuchida, Masaru |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5087749911 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-7185-3369 |
| authorships[2].author.display_name | M. Yamaguchi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yamaguchi, Mariko |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5020693766 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-8016-5144 |
| authorships[3].author.display_name | Takuhiro Kaneko |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kaneko, Takuhiro |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5007740741 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7697-9575 |
| authorships[4].author.display_name | Kazuhiko Murasaki |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Murasaki, Kazuhiko |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5041061202 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Taiga Yoshida |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yoshida, Taiga |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5060947560 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5379-3150 |
| authorships[6].author.display_name | Ryuichi Tanida |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Tanida, Ryuichi |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.19500 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Objective, Absolute and Hue-aware Metrics for Intrinsic Image Decomposition on Real-World Scenes: A Proof of Concept |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.988099992275238 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.19500 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.19500 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.19500 |
| primary_location.id | pmh:oai:arXiv.org:2505.19500 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.19500 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.19500 |
| publication_date | 2025-05-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.) | 123 |
| abstract_inverted_index.a | 62, 68, 72, 97, 101 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.To | 57 |
| abstract_inverted_index.an | 9, 85, 109 |
| abstract_inverted_index.by | 119 |
| abstract_inverted_index.in | 50, 100 |
| abstract_inverted_index.is | 4, 19, 117 |
| abstract_inverted_index.it | 18 |
| abstract_inverted_index.of | 7, 30, 64, 108 |
| abstract_inverted_index.on | 42, 91 |
| abstract_inverted_index.to | 21, 27 |
| abstract_inverted_index.we | 60, 83 |
| abstract_inverted_index.IID | 24 |
| abstract_inverted_index.The | 33 |
| abstract_inverted_index.and | 13, 54, 75, 78, 104, 112 |
| abstract_inverted_index.due | 26 |
| abstract_inverted_index.hue | 55 |
| abstract_inverted_index.the | 5, 28, 37, 106 |
| abstract_inverted_index.ICIP | 121 |
| abstract_inverted_index.IEEE | 120 |
| abstract_inverted_index.This | 94 |
| abstract_inverted_index.from | 71 |
| abstract_inverted_index.have | 48 |
| abstract_inverted_index.into | 11 |
| abstract_inverted_index.task | 6 |
| abstract_inverted_index.with | 67 |
| abstract_inverted_index.(IID) | 3 |
| abstract_inverted_index.(This | 115 |
| abstract_inverted_index.2025. | 122 |
| abstract_inverted_index.based | 41, 90 |
| abstract_inverted_index.image | 1, 10 |
| abstract_inverted_index.light | 76 |
| abstract_inverted_index.paper | 95, 116 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.albedo | 12, 70, 87 |
| abstract_inverted_index.assess | 23 |
| abstract_inverted_index.ground | 31 |
| abstract_inverted_index.method | 35 |
| abstract_inverted_index.shade. | 14 |
| abstract_inverted_index.these, | 59 |
| abstract_inverted_index.truth. | 32 |
| abstract_inverted_index.(LiDAR) | 80 |
| abstract_inverted_index.address | 58 |
| abstract_inverted_index.concept | 63, 98 |
| abstract_inverted_index.imaging | 74 |
| abstract_inverted_index.propose | 61 |
| abstract_inverted_index.quality | 25 |
| abstract_inverted_index.ranging | 79 |
| abstract_inverted_index.scenes, | 17 |
| abstract_inverted_index.However, | 45 |
| abstract_inverted_index.accepted | 118 |
| abstract_inverted_index.approach | 89 |
| abstract_inverted_index.existing | 34 |
| abstract_inverted_index.optional | 86 |
| abstract_inverted_index.provides | 36 |
| abstract_inverted_index.relative | 38, 52 |
| abstract_inverted_index.spectral | 92 |
| abstract_inverted_index.Intrinsic | 0 |
| abstract_inverted_index.absolute, | 111 |
| abstract_inverted_index.conducted | 96 |
| abstract_inverted_index.detection | 77 |
| abstract_inverted_index.difficult | 20 |
| abstract_inverted_index.hue-aware | 113 |
| abstract_inverted_index.introduce | 84 |
| abstract_inverted_index.suggested | 105 |
| abstract_inverted_index.calculated | 69 |
| abstract_inverted_index.challenges | 49 |
| abstract_inverted_index.evaluation | 66 |
| abstract_inverted_index.intensity. | 81 |
| abstract_inverted_index.laboratory | 102 |
| abstract_inverted_index.objective, | 110 |
| abstract_inverted_index.real-world | 16 |
| abstract_inverted_index.reflection | 39 |
| abstract_inverted_index.separating | 8 |
| abstract_inverted_index.annotations | 47 |
| abstract_inverted_index.assessment. | 114 |
| abstract_inverted_index.evaluation, | 53 |
| abstract_inverted_index.feasibility | 107 |
| abstract_inverted_index.intensities | 40 |
| abstract_inverted_index.similarity. | 93 |
| abstract_inverted_index.annotations. | 44 |
| abstract_inverted_index.environment, | 103 |
| abstract_inverted_index.human-judged | 43 |
| abstract_inverted_index.quantitative | 65 |
| abstract_inverted_index.verification | 99 |
| abstract_inverted_index.Additionally, | 82 |
| abstract_inverted_index.decomposition | 2 |
| abstract_inverted_index.densification | 88 |
| abstract_inverted_index.hyperspectral | 73 |
| abstract_inverted_index.subjectivity, | 51 |
| abstract_inverted_index.quantitatively | 22 |
| abstract_inverted_index.unavailability | 29 |
| abstract_inverted_index.non-assessment. | 56 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |