Observation points classifier ensemble for high‐dimensional imbalanced classification Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1049/cit2.12100
In this paper, an Observation Points Classifier Ensemble (OPCE) algorithm is proposed to deal with High‐Dimensional Imbalanced Classification (HDIC) problems based on data processed using the Multi‐Dimensional Scaling (MDS) feature extraction technique. First, dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible. Second, a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low‐dimensional data space. Third, optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples. Exhaustive experiments have been conducted to evaluate the feasibility, rationality, and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets. Experimental results show that (1) the OPCE algorithm can be trained faster on low‐dimensional imbalanced data than on high‐dimensional data; (2) the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased; and (3) statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms. This demonstrates that OPCE is a viable algorithm to deal with HDIC problems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/cit2.12100
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12100
- OA Status
- gold
- Cited By
- 5
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225410898
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225410898Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/cit2.12100Digital Object Identifier
- Title
-
Observation points classifier ensemble for high‐dimensional imbalanced classificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-04Full publication date if available
- Authors
-
Yulin He, Xu Li, Philippe Fournier‐Viger, Joshua Zhexue Huang, Mianjie Li, Salman SalloumList of authors in order
- Landing page
-
https://doi.org/10.1049/cit2.12100Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12100Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12100Direct OA link when available
- Concepts
-
Classifier (UML), Curse of dimensionality, Pattern recognition (psychology), Computer science, Artificial intelligence, Algorithm, Mathematics, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 4, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225410898 |
|---|---|
| doi | https://doi.org/10.1049/cit2.12100 |
| ids.doi | https://doi.org/10.1049/cit2.12100 |
| ids.openalex | https://openalex.org/W4225410898 |
| fwci | 0.9789941 |
| type | article |
| title | Observation points classifier ensemble for high‐dimensional imbalanced classification |
| awards[0].id | https://openalex.org/G7924544171 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61972261 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 2 |
| biblio.volume | 8 |
| biblio.last_page | 517 |
| biblio.first_page | 500 |
| topics[0].id | https://openalex.org/T11652 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Imbalanced Data Classification Techniques |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9907000064849854 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9787999987602234 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C95623464 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6111050248146057 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[0].display_name | Classifier (UML) |
| concepts[1].id | https://openalex.org/C111030470 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5282163619995117 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[1].display_name | Curse of dimensionality |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4940700829029083 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.46970412135124207 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.43901607394218445 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4239645302295685 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3643571734428406 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35479122400283813 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/classifier |
| keywords[0].score | 0.6111050248146057 |
| keywords[0].display_name | Classifier (UML) |
| keywords[1].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[1].score | 0.5282163619995117 |
| keywords[1].display_name | Curse of dimensionality |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.4940700829029083 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.46970412135124207 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.43901607394218445 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.4239645302295685 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.3643571734428406 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.35479122400283813 |
| keywords[7].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1049/cit2.12100 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898415742 |
| locations[0].source.issn | 2468-2322, 2468-6557 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2468-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | CAAI Transactions on Intelligence Technology |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12100 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | CAAI Transactions on Intelligence Technology |
| locations[0].landing_page_url | https://doi.org/10.1049/cit2.12100 |
| locations[1].id | pmh:oai:doaj.org/article:9a38f78e33244f7fafdb335f0f1b8dc6 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | CAAI Transactions on Intelligence Technology, Vol 8, Iss 2, Pp 500-517 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/9a38f78e33244f7fafdb335f0f1b8dc6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5076542236 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3415-0686 |
| authorships[0].author.display_name | Yulin He |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[0].affiliations[0].raw_affiliation_string | Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Computer Science & Software Engineering Shenzhen University Shenzhen China |
| authorships[0].institutions[0].id | https://openalex.org/I180726961 |
| authorships[0].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenzhen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yulin He |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Computer Science & Software Engineering Shenzhen University Shenzhen China, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China |
| authorships[1].author.id | https://openalex.org/A5100342489 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-8848-1904 |
| authorships[1].author.display_name | Xu Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science & Software Engineering Shenzhen University Shenzhen China |
| authorships[1].institutions[0].id | https://openalex.org/I180726961 |
| authorships[1].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science & Software Engineering Shenzhen University Shenzhen China |
| authorships[2].author.id | https://openalex.org/A5038682039 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7680-9899 |
| authorships[2].author.display_name | Philippe Fournier‐Viger |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science & Software Engineering Shenzhen University Shenzhen China |
| authorships[2].institutions[0].id | https://openalex.org/I180726961 |
| authorships[2].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Philippe Fournier‐Viger |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science & Software Engineering Shenzhen University Shenzhen China |
| authorships[3].author.id | https://openalex.org/A5003347359 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6797-2571 |
| authorships[3].author.display_name | Joshua Zhexue Huang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science & Software Engineering Shenzhen University Shenzhen China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I180726961 |
| authorships[3].affiliations[1].raw_affiliation_string | Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China |
| authorships[3].institutions[0].id | https://openalex.org/I180726961 |
| authorships[3].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shenzhen University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Joshua Zhexue Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science & Software Engineering Shenzhen University Shenzhen China, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China |
| authorships[4].author.id | https://openalex.org/A5027172171 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0807-478X |
| authorships[4].author.display_name | Mianjie Li |
| authorships[4].countries | MO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I111950717 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Macau University of Science and Technology, Macau, China |
| authorships[4].institutions[0].id | https://openalex.org/I111950717 |
| authorships[4].institutions[0].ror | https://ror.org/03jqs2n27 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I111950717, https://openalex.org/I4391767947 |
| authorships[4].institutions[0].country_code | MO |
| authorships[4].institutions[0].display_name | Macau University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mianjie Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Information Technology, Macau University of Science and Technology, Macau, China |
| authorships[5].author.id | https://openalex.org/A5064798504 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6750-003X |
| authorships[5].author.display_name | Salman Salloum |
| authorships[5].countries | SG |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computing, National University of Singapore, Singapore, Singapore |
| authorships[5].institutions[0].id | https://openalex.org/I165932596 |
| authorships[5].institutions[0].ror | https://ror.org/01tgyzw49 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I165932596 |
| authorships[5].institutions[0].country_code | SG |
| authorships[5].institutions[0].display_name | National University of Singapore |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Salman Salloum |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computing, National University of Singapore, Singapore, Singapore |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12100 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Observation points classifier ensemble for high‐dimensional imbalanced classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11652 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Imbalanced Data Classification Techniques |
| related_works | https://openalex.org/W2051487156, https://openalex.org/W4296209631, https://openalex.org/W2073681303, https://openalex.org/W3097449145, https://openalex.org/W2561617217, https://openalex.org/W2025378473, https://openalex.org/W2355801475, https://openalex.org/W4206659427, https://openalex.org/W2170062176, https://openalex.org/W2148135840 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1049/cit2.12100 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898415742 |
| best_oa_location.source.issn | 2468-2322, 2468-6557 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2468-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | CAAI Transactions on Intelligence Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12100 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | CAAI Transactions on Intelligence Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1049/cit2.12100 |
| primary_location.id | doi:10.1049/cit2.12100 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898415742 |
| primary_location.source.issn | 2468-2322, 2468-6557 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2468-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | CAAI Transactions on Intelligence Technology |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cit2.12100 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | CAAI Transactions on Intelligence Technology |
| primary_location.landing_page_url | https://doi.org/10.1049/cit2.12100 |
| publication_date | 2022-05-04 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2154706222, https://openalex.org/W2962981269, https://openalex.org/W1754612754, https://openalex.org/W1517113043, https://openalex.org/W2172611079, https://openalex.org/W2408246687, https://openalex.org/W2148143831, https://openalex.org/W2766296277, https://openalex.org/W1965337628, https://openalex.org/W2908285635, https://openalex.org/W3087306757, https://openalex.org/W2131391419, https://openalex.org/W2015283109, https://openalex.org/W1975664724, https://openalex.org/W2792730533, https://openalex.org/W2540352327, https://openalex.org/W3185543926, https://openalex.org/W2156571267, https://openalex.org/W3093372050, https://openalex.org/W2152195021, https://openalex.org/W1912982817, https://openalex.org/W2135493362, https://openalex.org/W61851215, https://openalex.org/W1565746575, https://openalex.org/W2773612851, https://openalex.org/W2317515691, https://openalex.org/W2560070550, https://openalex.org/W2593914038, https://openalex.org/W2910967743, https://openalex.org/W3200959564, https://openalex.org/W2010334716, https://openalex.org/W3036600133 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 59, 75, 91, 186 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 54, 56, 149 |
| abstract_inverted_index.be | 130 |
| abstract_inverted_index.by | 69 |
| abstract_inverted_index.in | 74, 174 |
| abstract_inverted_index.is | 11, 40, 63, 86, 156, 185 |
| abstract_inverted_index.of | 35, 81, 94, 110, 152 |
| abstract_inverted_index.on | 22, 133, 138, 169 |
| abstract_inverted_index.so | 44 |
| abstract_inverted_index.to | 13, 65, 89, 103, 189 |
| abstract_inverted_index.(1) | 125 |
| abstract_inverted_index.(2) | 141 |
| abstract_inverted_index.(3) | 159 |
| abstract_inverted_index.MDS | 43 |
| abstract_inverted_index.and | 108, 158 |
| abstract_inverted_index.any | 48 |
| abstract_inverted_index.are | 52 |
| abstract_inverted_index.can | 129, 145 |
| abstract_inverted_index.out | 88 |
| abstract_inverted_index.the | 26, 36, 82, 95, 105, 111, 126, 142, 150, 170 |
| abstract_inverted_index.two | 49 |
| abstract_inverted_index.HDIC | 118, 167, 179, 192 |
| abstract_inverted_index.OPCE | 61, 113, 127, 143, 164, 184 |
| abstract_inverted_index.This | 181 |
| abstract_inverted_index.been | 101 |
| abstract_inverted_index.data | 23, 39, 77, 119, 136, 172 |
| abstract_inverted_index.deal | 14, 190 |
| abstract_inverted_index.have | 100 |
| abstract_inverted_index.sets | 173 |
| abstract_inverted_index.show | 123 |
| abstract_inverted_index.than | 137 |
| abstract_inverted_index.that | 45, 124, 163, 183 |
| abstract_inverted_index.this | 2 |
| abstract_inverted_index.well | 55 |
| abstract_inverted_index.with | 15, 176, 191 |
| abstract_inverted_index.(MDS) | 29 |
| abstract_inverted_index.based | 21 |
| abstract_inverted_index.data; | 140 |
| abstract_inverted_index.eight | 177 |
| abstract_inverted_index.novel | 60 |
| abstract_inverted_index.other | 178 |
| abstract_inverted_index.point | 84 |
| abstract_inverted_index.sets. | 120 |
| abstract_inverted_index.seven | 116 |
| abstract_inverted_index.using | 25, 42, 115 |
| abstract_inverted_index.(HDIC) | 19 |
| abstract_inverted_index.(OPCE) | 9 |
| abstract_inverted_index.First, | 33 |
| abstract_inverted_index.Points | 6 |
| abstract_inverted_index.Third, | 79 |
| abstract_inverted_index.better | 166 |
| abstract_inverted_index.faster | 132 |
| abstract_inverted_index.number | 151 |
| abstract_inverted_index.obtain | 90 |
| abstract_inverted_index.paper, | 3 |
| abstract_inverted_index.points | 73, 155 |
| abstract_inverted_index.space. | 78 |
| abstract_inverted_index.viable | 187 |
| abstract_inverted_index.yields | 165 |
| abstract_inverted_index.Scaling | 28 |
| abstract_inverted_index.Second, | 58 |
| abstract_inverted_index.applied | 64 |
| abstract_inverted_index.between | 47 |
| abstract_inverted_index.carried | 87 |
| abstract_inverted_index.feature | 30 |
| abstract_inverted_index.placing | 70 |
| abstract_inverted_index.reduced | 41 |
| abstract_inverted_index.results | 122 |
| abstract_inverted_index.reveals | 162 |
| abstract_inverted_index.samples | 51, 68, 148 |
| abstract_inverted_index.trained | 131 |
| abstract_inverted_index.unknown | 96 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Ensemble | 8 |
| abstract_inverted_index.analysis | 161 |
| abstract_inverted_index.classify | 66 |
| abstract_inverted_index.evaluate | 104 |
| abstract_inverted_index.identify | 147 |
| abstract_inverted_index.mappings | 85 |
| abstract_inverted_index.original | 37 |
| abstract_inverted_index.problems | 20 |
| abstract_inverted_index.proposed | 12, 112 |
| abstract_inverted_index.reliable | 92 |
| abstract_inverted_index.samples. | 97 |
| abstract_inverted_index.selected | 171 |
| abstract_inverted_index.algorithm | 10, 62, 114, 128, 144, 188 |
| abstract_inverted_index.benchmark | 117 |
| abstract_inverted_index.conducted | 102 |
| abstract_inverted_index.correctly | 146 |
| abstract_inverted_index.different | 50 |
| abstract_inverted_index.distances | 46 |
| abstract_inverted_index.optimised | 71, 153 |
| abstract_inverted_index.possible. | 57 |
| abstract_inverted_index.preserved | 53 |
| abstract_inverted_index.problems. | 193 |
| abstract_inverted_index.processed | 24 |
| abstract_inverted_index.Classifier | 7 |
| abstract_inverted_index.Exhaustive | 98 |
| abstract_inverted_index.Imbalanced | 17 |
| abstract_inverted_index.assessment | 93 |
| abstract_inverted_index.comparison | 175 |
| abstract_inverted_index.extraction | 31 |
| abstract_inverted_index.imbalanced | 38, 67, 135 |
| abstract_inverted_index.increased; | 157 |
| abstract_inverted_index.technique. | 32 |
| abstract_inverted_index.Observation | 5 |
| abstract_inverted_index.algorithms. | 180 |
| abstract_inverted_index.experiments | 99 |
| abstract_inverted_index.observation | 72, 83, 154 |
| abstract_inverted_index.statistical | 160 |
| abstract_inverted_index.Experimental | 121 |
| abstract_inverted_index.demonstrates | 182 |
| abstract_inverted_index.feasibility, | 106 |
| abstract_inverted_index.optimization | 80 |
| abstract_inverted_index.performances | 168 |
| abstract_inverted_index.rationality, | 107 |
| abstract_inverted_index.effectiveness | 109 |
| abstract_inverted_index.Classification | 18 |
| abstract_inverted_index.dimensionality | 34 |
| abstract_inverted_index.low‐dimensional | 76, 134 |
| abstract_inverted_index.High‐Dimensional | 16 |
| abstract_inverted_index.high‐dimensional | 139 |
| abstract_inverted_index.Multi‐Dimensional | 27 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5076542236 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I180726961 |
| citation_normalized_percentile.value | 0.74726649 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |