Observational Scaling Laws and the Predictability of Language Model Performance Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.10938
Understanding how language model performance varies with scale is critical to benchmark and algorithm development. Scaling laws are one approach to building this understanding, but the requirement of training models across many different scales has limited their use. We propose an alternative, observational approach that bypasses model training and instead builds scaling laws from ~100 publically available models. Building a single scaling law from multiple model families is challenging due to large variations in their training compute efficiencies and capabilities. However, we show that these variations are consistent with a simple, generalized scaling law where language model performance is a function of a low-dimensional capability space, and model families only vary in their efficiency in converting training compute to capabilities. Using this approach, we show the surprising predictability of complex scaling phenomena: we show that several emergent phenomena follow a smooth, sigmoidal behavior and are predictable from small models; we show that the agent performance of models such as GPT-4 can be precisely predicted from simpler non-agentic benchmarks; and we show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities continue to improve.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.10938
- https://arxiv.org/pdf/2405.10938
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398157620
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398157620Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.10938Digital Object Identifier
- Title
-
Observational Scaling Laws and the Predictability of Language Model PerformanceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-17Full publication date if available
- Authors
-
Yangjun Ruan, Chris J. Maddison, Tatsunori HashimotoList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.10938Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.10938Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.10938Direct OA link when available
- Concepts
-
Predictability, Observational study, Scaling, Scaling law, Econometrics, Computer science, Economics, Mathematics, Statistics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398157620 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.10938 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.10938 |
| ids.openalex | https://openalex.org/W4398157620 |
| fwci | |
| type | preprint |
| title | Observational Scaling Laws and the Predictability of Language Model Performance |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9667999744415283 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9124000072479248 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C197640229 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9329477548599243 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2534066 |
| concepts[0].display_name | Predictability |
| concepts[1].id | https://openalex.org/C23131810 |
| concepts[1].level | 2 |
| concepts[1].score | 0.788745641708374 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q818574 |
| concepts[1].display_name | Observational study |
| concepts[2].id | https://openalex.org/C99844830 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5349883437156677 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[2].display_name | Scaling |
| concepts[3].id | https://openalex.org/C2988430800 |
| concepts[3].level | 3 |
| concepts[3].score | 0.46890413761138916 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q428971 |
| concepts[3].display_name | Scaling law |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36179912090301514 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3503289222717285 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C162324750 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2548661231994629 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[6].display_name | Economics |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.25480496883392334 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.20050248503684998 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/predictability |
| keywords[0].score | 0.9329477548599243 |
| keywords[0].display_name | Predictability |
| keywords[1].id | https://openalex.org/keywords/observational-study |
| keywords[1].score | 0.788745641708374 |
| keywords[1].display_name | Observational study |
| keywords[2].id | https://openalex.org/keywords/scaling |
| keywords[2].score | 0.5349883437156677 |
| keywords[2].display_name | Scaling |
| keywords[3].id | https://openalex.org/keywords/scaling-law |
| keywords[3].score | 0.46890413761138916 |
| keywords[3].display_name | Scaling law |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.36179912090301514 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3503289222717285 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/economics |
| keywords[6].score | 0.2548661231994629 |
| keywords[6].display_name | Economics |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.25480496883392334 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.20050248503684998 |
| keywords[8].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.10938 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.10938 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.10938 |
| locations[1].id | doi:10.48550/arxiv.2405.10938 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.10938 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5074108427 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0816-219X |
| authorships[0].author.display_name | Yangjun Ruan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruan, Yangjun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054711904 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chris J. Maddison |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Maddison, Chris J. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5015518638 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0521-5855 |
| authorships[2].author.display_name | Tatsunori Hashimoto |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Hashimoto, Tatsunori |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.10938 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-21T00:00:00 |
| display_name | Observational Scaling Laws and the Predictability of Language Model Performance |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9667999744415283 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W3206776788, https://openalex.org/W2231089071, https://openalex.org/W2117748264, https://openalex.org/W4298190863, https://openalex.org/W2518229301, https://openalex.org/W2597205018, https://openalex.org/W2554072523, https://openalex.org/W1671671741, https://openalex.org/W2952002823, https://openalex.org/W2013329450 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.10938 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.10938 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.10938 |
| primary_location.id | pmh:oai:arXiv.org:2405.10938 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.10938 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.10938 |
| publication_date | 2024-05-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 59, 89, 99, 102, 139 |
| abstract_inverted_index.We | 38 |
| abstract_inverted_index.an | 40 |
| abstract_inverted_index.as | 158, 183 |
| abstract_inverted_index.be | 161 |
| abstract_inverted_index.in | 73, 111, 114 |
| abstract_inverted_index.is | 8, 67, 98 |
| abstract_inverted_index.of | 27, 101, 128, 155, 176 |
| abstract_inverted_index.to | 10, 20, 70, 118, 172, 188 |
| abstract_inverted_index.we | 81, 123, 132, 149, 169 |
| abstract_inverted_index.and | 12, 48, 78, 106, 143, 168, 181 |
| abstract_inverted_index.are | 17, 86, 144 |
| abstract_inverted_index.but | 24 |
| abstract_inverted_index.can | 160 |
| abstract_inverted_index.due | 69 |
| abstract_inverted_index.has | 34 |
| abstract_inverted_index.how | 1, 171 |
| abstract_inverted_index.law | 62, 93 |
| abstract_inverted_index.one | 18 |
| abstract_inverted_index.the | 25, 125, 152, 174 |
| abstract_inverted_index.from | 53, 63, 146, 164 |
| abstract_inverted_index.laws | 16, 52 |
| abstract_inverted_index.like | 179 |
| abstract_inverted_index.many | 31 |
| abstract_inverted_index.only | 109 |
| abstract_inverted_index.show | 82, 124, 133, 150, 170 |
| abstract_inverted_index.such | 157 |
| abstract_inverted_index.that | 44, 83, 134, 151 |
| abstract_inverted_index.this | 22, 121 |
| abstract_inverted_index.use. | 37 |
| abstract_inverted_index.vary | 110 |
| abstract_inverted_index.with | 6, 88 |
| abstract_inverted_index.~100 | 54 |
| abstract_inverted_index.GPT-4 | 159 |
| abstract_inverted_index.Using | 120 |
| abstract_inverted_index.agent | 153 |
| abstract_inverted_index.large | 71 |
| abstract_inverted_index.model | 3, 46, 65, 96, 107, 185 |
| abstract_inverted_index.scale | 7 |
| abstract_inverted_index.small | 147 |
| abstract_inverted_index.their | 36, 74, 112 |
| abstract_inverted_index.these | 84 |
| abstract_inverted_index.where | 94 |
| abstract_inverted_index.across | 30 |
| abstract_inverted_index.builds | 50 |
| abstract_inverted_index.follow | 138 |
| abstract_inverted_index.impact | 175 |
| abstract_inverted_index.models | 29, 156 |
| abstract_inverted_index.scales | 33 |
| abstract_inverted_index.single | 60 |
| abstract_inverted_index.space, | 105 |
| abstract_inverted_index.varies | 5 |
| abstract_inverted_index.Scaling | 15 |
| abstract_inverted_index.complex | 129 |
| abstract_inverted_index.compute | 76, 117 |
| abstract_inverted_index.instead | 49 |
| abstract_inverted_index.limited | 35 |
| abstract_inverted_index.models. | 57 |
| abstract_inverted_index.models; | 148 |
| abstract_inverted_index.predict | 173 |
| abstract_inverted_index.propose | 39 |
| abstract_inverted_index.scaling | 51, 61, 92, 130 |
| abstract_inverted_index.several | 135 |
| abstract_inverted_index.simple, | 90 |
| abstract_inverted_index.simpler | 165 |
| abstract_inverted_index.smooth, | 140 |
| abstract_inverted_index.Building | 58 |
| abstract_inverted_index.However, | 80 |
| abstract_inverted_index.approach | 19, 43 |
| abstract_inverted_index.behavior | 142 |
| abstract_inverted_index.building | 21 |
| abstract_inverted_index.bypasses | 45 |
| abstract_inverted_index.continue | 187 |
| abstract_inverted_index.critical | 9 |
| abstract_inverted_index.emergent | 136 |
| abstract_inverted_index.families | 66, 108 |
| abstract_inverted_index.function | 100 |
| abstract_inverted_index.improve. | 189 |
| abstract_inverted_index.language | 2, 95, 184 |
| abstract_inverted_index.multiple | 64 |
| abstract_inverted_index.training | 28, 47, 75, 116 |
| abstract_inverted_index.algorithm | 13 |
| abstract_inverted_index.approach, | 122 |
| abstract_inverted_index.available | 56 |
| abstract_inverted_index.benchmark | 11 |
| abstract_inverted_index.different | 32 |
| abstract_inverted_index.phenomena | 137 |
| abstract_inverted_index.precisely | 162 |
| abstract_inverted_index.predicted | 163 |
| abstract_inverted_index.sigmoidal | 141 |
| abstract_inverted_index.capability | 104 |
| abstract_inverted_index.consistent | 87 |
| abstract_inverted_index.converting | 115 |
| abstract_inverted_index.efficiency | 113 |
| abstract_inverted_index.phenomena: | 131 |
| abstract_inverted_index.publically | 55 |
| abstract_inverted_index.surprising | 126 |
| abstract_inverted_index.variations | 72, 85 |
| abstract_inverted_index.benchmarks; | 167 |
| abstract_inverted_index.challenging | 68 |
| abstract_inverted_index.generalized | 91 |
| abstract_inverted_index.non-agentic | 166 |
| abstract_inverted_index.performance | 4, 97, 154 |
| abstract_inverted_index.predictable | 145 |
| abstract_inverted_index.requirement | 26 |
| abstract_inverted_index.alternative, | 41 |
| abstract_inverted_index.capabilities | 186 |
| abstract_inverted_index.development. | 14 |
| abstract_inverted_index.efficiencies | 77 |
| abstract_inverted_index.Understanding | 0 |
| abstract_inverted_index.capabilities. | 79, 119 |
| abstract_inverted_index.interventions | 178 |
| abstract_inverted_index.observational | 42 |
| abstract_inverted_index.post-training | 177 |
| abstract_inverted_index.predictability | 127 |
| abstract_inverted_index.understanding, | 23 |
| abstract_inverted_index.low-dimensional | 103 |
| abstract_inverted_index.Chain-of-Thought | 180 |
| abstract_inverted_index.Self-Consistency | 182 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |