Obstructing Classification via Projection Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2105.09047
Machine learning and data mining techniques are effective tools to classify large amounts of data. But they tend to preserve any inherent bias in the data, for example, with regards to gender or race. Removing such bias from data or the learned representations is quite challenging. In this paper we study a geometric problem which models a possible approach for bias removal. Our input is a set of points P in Euclidean space R^d and each point is labeled with k binary-valued properties. A priori we assume that it is "easy" to classify the data according to each property. Our goal is to obstruct the classification according to one property by a suitable projection to a lower-dimensional Euclidean space R^m (m < d), while classification according to all other properties remains easy. What it means for classification to be easy depends on the classification model used. We first consider classification by linear separability as employed by support vector machines. We use Kirchberger's Theorem to show that, under certain conditions, a simple projection to R^(d-1) suffices to eliminate the linear separability of one of the properties whilst maintaining the linear separability of the other properties. We also study the problem of maximizing the linear "inseparability" of the chosen property. Second, we consider more complex forms of separability and prove a connection between the number of projections required to obstruct classification and the Helly-type properties of such separabilities.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2105.09047
- https://arxiv.org/pdf/2105.09047
- OA Status
- green
- Cited By
- 1
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3160467181
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3160467181Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2105.09047Digital Object Identifier
- Title
-
Obstructing Classification via ProjectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-19Full publication date if available
- Authors
-
Pantea Haghighatkhah, Wouter Meulemans, Bettina Speckman, Jérôme Urhausen, Kevin VerbeekList of authors in order
- Landing page
-
https://arxiv.org/abs/2105.09047Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2105.09047Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2105.09047Direct OA link when available
- Concepts
-
Projection (relational algebra), Computer science, Artificial intelligence, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3160467181 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2105.09047 |
| ids.doi | https://doi.org/10.48550/arxiv.2105.09047 |
| ids.mag | 3160467181 |
| ids.openalex | https://openalex.org/W3160467181 |
| fwci | |
| type | preprint |
| title | Obstructing Classification via Projection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12072 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9876000285148621 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Algorithms |
| topics[1].id | https://openalex.org/T12002 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9843999743461609 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Computability, Logic, AI Algorithms |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9829000234603882 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C57493831 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6388814449310303 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[0].display_name | Projection (relational algebra) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4215222895145416 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4068741798400879 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.14406177401542664 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/projection |
| keywords[0].score | 0.6388814449310303 |
| keywords[0].display_name | Projection (relational algebra) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4215222895145416 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4068741798400879 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.14406177401542664 |
| keywords[3].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2105.09047 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2105.09047 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2105.09047 |
| locations[1].id | doi:10.48550/arxiv.2105.09047 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2105.09047 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5089227393 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pantea Haghighatkhah |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pantea Haghighatkhah |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5062614232 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4978-3400 |
| authorships[1].author.display_name | Wouter Meulemans |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wouter Meulemans |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5112638639 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Bettina Speckman |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bettina Speckman |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070680982 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jérôme Urhausen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jérôme Urhausen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5053109913 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3052-4844 |
| authorships[4].author.display_name | Kevin Verbeek |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kevin Verbeek |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2105.09047 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Obstructing Classification via Projection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12072 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9876000285148621 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Algorithms |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2105.09047 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2105.09047 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2105.09047 |
| primary_location.id | pmh:oai:arXiv.org:2105.09047 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2105.09047 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2105.09047 |
| publication_date | 2021-05-19 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1997141435, https://openalex.org/W2530395818, https://openalex.org/W2162670686, https://openalex.org/W2913897682, https://openalex.org/W3181414820, https://openalex.org/W2962790618, https://openalex.org/W3023309920, https://openalex.org/W2982435932, https://openalex.org/W2889624842, https://openalex.org/W2963116854, https://openalex.org/W1506806321, https://openalex.org/W1530144005, https://openalex.org/W2078402485, https://openalex.org/W2963723885, https://openalex.org/W2014352947, https://openalex.org/W2963053914, https://openalex.org/W1509442273, https://openalex.org/W2997588435, https://openalex.org/W3004865980, https://openalex.org/W2622808887, https://openalex.org/W3035241006, https://openalex.org/W2116984840, https://openalex.org/W2893425640, https://openalex.org/W2483215953, https://openalex.org/W2963612262, https://openalex.org/W2546836975 |
| referenced_works_count | 26 |
| abstract_inverted_index.A | 83 |
| abstract_inverted_index.P | 69 |
| abstract_inverted_index.a | 51, 56, 65, 111, 115, 169, 218 |
| abstract_inverted_index.k | 80 |
| abstract_inverted_index.(m | 120 |
| abstract_inverted_index.In | 46 |
| abstract_inverted_index.We | 146, 159, 194 |
| abstract_inverted_index.as | 153 |
| abstract_inverted_index.be | 138 |
| abstract_inverted_index.by | 110, 150, 155 |
| abstract_inverted_index.in | 23, 70 |
| abstract_inverted_index.is | 43, 64, 77, 89, 101 |
| abstract_inverted_index.it | 88, 133 |
| abstract_inverted_index.of | 13, 67, 180, 182, 190, 199, 204, 214, 223, 233 |
| abstract_inverted_index.on | 141 |
| abstract_inverted_index.or | 32, 39 |
| abstract_inverted_index.to | 9, 18, 30, 91, 96, 102, 107, 114, 126, 137, 163, 172, 175, 226 |
| abstract_inverted_index.we | 49, 85, 209 |
| abstract_inverted_index.But | 15 |
| abstract_inverted_index.Our | 62, 99 |
| abstract_inverted_index.R^d | 73 |
| abstract_inverted_index.R^m | 119 |
| abstract_inverted_index.all | 127 |
| abstract_inverted_index.and | 2, 74, 216, 229 |
| abstract_inverted_index.any | 20 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.d), | 122 |
| abstract_inverted_index.for | 26, 59, 135 |
| abstract_inverted_index.one | 108, 181 |
| abstract_inverted_index.set | 66 |
| abstract_inverted_index.the | 24, 40, 93, 104, 142, 177, 183, 187, 191, 197, 201, 205, 221, 230 |
| abstract_inverted_index.use | 160 |
| abstract_inverted_index.< | 121 |
| abstract_inverted_index.What | 132 |
| abstract_inverted_index.also | 195 |
| abstract_inverted_index.bias | 22, 36, 60 |
| abstract_inverted_index.data | 3, 38, 94 |
| abstract_inverted_index.each | 75, 97 |
| abstract_inverted_index.easy | 139 |
| abstract_inverted_index.from | 37 |
| abstract_inverted_index.goal | 100 |
| abstract_inverted_index.more | 211 |
| abstract_inverted_index.show | 164 |
| abstract_inverted_index.such | 35, 234 |
| abstract_inverted_index.tend | 17 |
| abstract_inverted_index.that | 87 |
| abstract_inverted_index.they | 16 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.with | 28, 79 |
| abstract_inverted_index.data, | 25 |
| abstract_inverted_index.data. | 14 |
| abstract_inverted_index.easy. | 131 |
| abstract_inverted_index.first | 147 |
| abstract_inverted_index.forms | 213 |
| abstract_inverted_index.input | 63 |
| abstract_inverted_index.large | 11 |
| abstract_inverted_index.means | 134 |
| abstract_inverted_index.model | 144 |
| abstract_inverted_index.other | 128, 192 |
| abstract_inverted_index.paper | 48 |
| abstract_inverted_index.point | 76 |
| abstract_inverted_index.prove | 217 |
| abstract_inverted_index.quite | 44 |
| abstract_inverted_index.race. | 33 |
| abstract_inverted_index.space | 72, 118 |
| abstract_inverted_index.study | 50, 196 |
| abstract_inverted_index.that, | 165 |
| abstract_inverted_index.tools | 8 |
| abstract_inverted_index.under | 166 |
| abstract_inverted_index.used. | 145 |
| abstract_inverted_index.which | 54 |
| abstract_inverted_index.while | 123 |
| abstract_inverted_index."easy" | 90 |
| abstract_inverted_index.assume | 86 |
| abstract_inverted_index.chosen | 206 |
| abstract_inverted_index.gender | 31 |
| abstract_inverted_index.linear | 151, 178, 188, 202 |
| abstract_inverted_index.mining | 4 |
| abstract_inverted_index.models | 55 |
| abstract_inverted_index.number | 222 |
| abstract_inverted_index.points | 68 |
| abstract_inverted_index.priori | 84 |
| abstract_inverted_index.simple | 170 |
| abstract_inverted_index.vector | 157 |
| abstract_inverted_index.whilst | 185 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.R^(d-1) | 173 |
| abstract_inverted_index.Second, | 208 |
| abstract_inverted_index.Theorem | 162 |
| abstract_inverted_index.amounts | 12 |
| abstract_inverted_index.between | 220 |
| abstract_inverted_index.certain | 167 |
| abstract_inverted_index.complex | 212 |
| abstract_inverted_index.depends | 140 |
| abstract_inverted_index.labeled | 78 |
| abstract_inverted_index.learned | 41 |
| abstract_inverted_index.problem | 53, 198 |
| abstract_inverted_index.regards | 29 |
| abstract_inverted_index.remains | 130 |
| abstract_inverted_index.support | 156 |
| abstract_inverted_index.Removing | 34 |
| abstract_inverted_index.approach | 58 |
| abstract_inverted_index.classify | 10, 92 |
| abstract_inverted_index.consider | 148, 210 |
| abstract_inverted_index.employed | 154 |
| abstract_inverted_index.example, | 27 |
| abstract_inverted_index.inherent | 21 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.obstruct | 103, 227 |
| abstract_inverted_index.possible | 57 |
| abstract_inverted_index.preserve | 19 |
| abstract_inverted_index.property | 109 |
| abstract_inverted_index.removal. | 61 |
| abstract_inverted_index.required | 225 |
| abstract_inverted_index.suffices | 174 |
| abstract_inverted_index.suitable | 112 |
| abstract_inverted_index.Euclidean | 71, 117 |
| abstract_inverted_index.according | 95, 106, 125 |
| abstract_inverted_index.effective | 7 |
| abstract_inverted_index.eliminate | 176 |
| abstract_inverted_index.geometric | 52 |
| abstract_inverted_index.machines. | 158 |
| abstract_inverted_index.property. | 98, 207 |
| abstract_inverted_index.Helly-type | 231 |
| abstract_inverted_index.connection | 219 |
| abstract_inverted_index.maximizing | 200 |
| abstract_inverted_index.projection | 113, 171 |
| abstract_inverted_index.properties | 129, 184, 232 |
| abstract_inverted_index.techniques | 5 |
| abstract_inverted_index.conditions, | 168 |
| abstract_inverted_index.maintaining | 186 |
| abstract_inverted_index.projections | 224 |
| abstract_inverted_index.properties. | 82, 193 |
| abstract_inverted_index.challenging. | 45 |
| abstract_inverted_index.separability | 152, 179, 189, 215 |
| abstract_inverted_index.Kirchberger's | 161 |
| abstract_inverted_index.binary-valued | 81 |
| abstract_inverted_index.classification | 105, 124, 136, 143, 149, 228 |
| abstract_inverted_index.representations | 42 |
| abstract_inverted_index.separabilities. | 235 |
| abstract_inverted_index."inseparability" | 203 |
| abstract_inverted_index.lower-dimensional | 116 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/5 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Gender equality |
| citation_normalized_percentile |