OCCAM: Optimal Data Reuse for Convolutional Neural Networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2106.14138
Convolutional neural networks (CNNs) are emerging as powerful tools for image processing in important commercial applications. We focus on the important problem of improving the latency of image recognition. CNNs' large data at each layer's input, filters, and output poses a memory bandwidth problem. While previous work captures only some of the enormous data reuse, full reuse implies that the initial input image and filters are read once from off chip and the final output is written once off chip without spilling the intermediate layers' data to off-chip. We propose Occam to capture full reuse via four contributions. (1) We identify the necessary condition for full reuse. (2) We identify the dependence closure as the sufficient condition to capture full reuse using the least on-chip memory. (3) Because the dependence closure is often too large to fit in on-chip memory, we propose a dynamic programming algorithm that optimally partitions a given CNN to guarantee the least off-chip traffic at the partition boundaries for a given on-chip capacity. Occam's partitions reside on different chips forming a pipeline so that a partition's filters and dependence closure remain on-chip as different images pass through (i.e., each partition incurs off-chip traffic only for its inputs and outputs). (4) because the optimal partitions may result in an unbalanced pipeline, we propose staggered asynchronous pipelines (STAP) which replicates the bottleneck stages to improve throughput by staggering the mini-batches across the replicas. Importantly, STAP achieves balanced pipelines without changing Occam's optimal partitioning. Our simulations show that Occam cuts off-chip transfers by 21x and achieves 2.06x and 1.36x better performance, and 33\% and 24\% better energy than the base case and Layer Fusion, respectively. On an FPGA implementation, Occam performs 5.1x better than the base case.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2106.14138
- https://arxiv.org/pdf/2106.14138
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4311701604
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4311701604Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2106.14138Digital Object Identifier
- Title
-
OCCAM: Optimal Data Reuse for Convolutional Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-27Full publication date if available
- Authors
-
Ashish Gondimalla, Jianqiao Liu, T. N. Vijaykumar, Mithuna ThottethodiList of authors in order
- Landing page
-
https://arxiv.org/abs/2106.14138Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2106.14138Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2106.14138Direct OA link when available
- Concepts
-
Computer science, occam, Parallel computing, Convolutional neural network, Pipeline (software), Reuse, Chip, Computer engineering, Artificial intelligence, Programming language, Engineering, Waste management, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4311701604 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2106.14138 |
| ids.doi | https://doi.org/10.48550/arxiv.2106.14138 |
| ids.openalex | https://openalex.org/W4311701604 |
| fwci | |
| type | preprint |
| title | OCCAM: Optimal Data Reuse for Convolutional Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T11992 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | CCD and CMOS Imaging Sensors |
| topics[2].id | https://openalex.org/T10502 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9983999729156494 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Memory and Neural Computing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7984809875488281 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C78469957 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5991780161857605 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q838062 |
| concepts[1].display_name | occam |
| concepts[2].id | https://openalex.org/C173608175 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5393301248550415 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[2].display_name | Parallel computing |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5349565744400024 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C43521106 |
| concepts[4].level | 2 |
| concepts[4].score | 0.513225793838501 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[4].display_name | Pipeline (software) |
| concepts[5].id | https://openalex.org/C206588197 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5129806399345398 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q846574 |
| concepts[5].display_name | Reuse |
| concepts[6].id | https://openalex.org/C165005293 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4923766851425171 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1074500 |
| concepts[6].display_name | Chip |
| concepts[7].id | https://openalex.org/C113775141 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4761093556880951 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[7].display_name | Computer engineering |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2245633900165558 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.11850666999816895 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.10712262988090515 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C548081761 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q180388 |
| concepts[11].display_name | Waste management |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7984809875488281 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/occam |
| keywords[1].score | 0.5991780161857605 |
| keywords[1].display_name | occam |
| keywords[2].id | https://openalex.org/keywords/parallel-computing |
| keywords[2].score | 0.5393301248550415 |
| keywords[2].display_name | Parallel computing |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5349565744400024 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/pipeline |
| keywords[4].score | 0.513225793838501 |
| keywords[4].display_name | Pipeline (software) |
| keywords[5].id | https://openalex.org/keywords/reuse |
| keywords[5].score | 0.5129806399345398 |
| keywords[5].display_name | Reuse |
| keywords[6].id | https://openalex.org/keywords/chip |
| keywords[6].score | 0.4923766851425171 |
| keywords[6].display_name | Chip |
| keywords[7].id | https://openalex.org/keywords/computer-engineering |
| keywords[7].score | 0.4761093556880951 |
| keywords[7].display_name | Computer engineering |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.2245633900165558 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/programming-language |
| keywords[9].score | 0.11850666999816895 |
| keywords[9].display_name | Programming language |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.10712262988090515 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2106.14138 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2106.14138 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2106.14138 |
| locations[1].id | doi:10.48550/arxiv.2106.14138 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2106.14138 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001458388 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3370-3576 |
| authorships[0].author.display_name | Ashish Gondimalla |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gondimalla, Ashish |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101876435 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4022-8897 |
| authorships[1].author.display_name | Jianqiao Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Jianqiao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103145581 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6624-4372 |
| authorships[2].author.display_name | T. N. Vijaykumar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vijaykumar, T. N. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5069139257 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4164-4542 |
| authorships[3].author.display_name | Mithuna Thottethodi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Thottethodi, Mithuna |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2106.14138 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | OCCAM: Optimal Data Reuse for Convolutional Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2024391838, https://openalex.org/W1984951496, https://openalex.org/W2735234633, https://openalex.org/W4240818040, https://openalex.org/W1972505840, https://openalex.org/W2072381325, https://openalex.org/W4385825373, https://openalex.org/W2114551626, https://openalex.org/W652065138, https://openalex.org/W85466211 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2106.14138 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2106.14138 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2106.14138 |
| primary_location.id | pmh:oai:arXiv.org:2106.14138 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2106.14138 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2106.14138 |
| publication_date | 2021-06-27 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 40, 142, 149, 163, 174, 178 |
| abstract_inverted_index.On | 276 |
| abstract_inverted_index.We | 16, 88, 99, 108 |
| abstract_inverted_index.an | 211, 277 |
| abstract_inverted_index.as | 6, 113, 186 |
| abstract_inverted_index.at | 32, 158 |
| abstract_inverted_index.by | 228, 253 |
| abstract_inverted_index.in | 12, 137, 210 |
| abstract_inverted_index.is | 75, 131 |
| abstract_inverted_index.of | 22, 26, 50 |
| abstract_inverted_index.on | 18, 170 |
| abstract_inverted_index.so | 176 |
| abstract_inverted_index.to | 86, 91, 117, 135, 152, 225 |
| abstract_inverted_index.we | 140, 214 |
| abstract_inverted_index.(1) | 98 |
| abstract_inverted_index.(2) | 107 |
| abstract_inverted_index.(3) | 126 |
| abstract_inverted_index.(4) | 203 |
| abstract_inverted_index.21x | 254 |
| abstract_inverted_index.CNN | 151 |
| abstract_inverted_index.Our | 245 |
| abstract_inverted_index.and | 37, 63, 71, 181, 201, 255, 258, 262, 264, 272 |
| abstract_inverted_index.are | 4, 65 |
| abstract_inverted_index.fit | 136 |
| abstract_inverted_index.for | 9, 104, 162, 198 |
| abstract_inverted_index.its | 199 |
| abstract_inverted_index.may | 208 |
| abstract_inverted_index.off | 69, 78 |
| abstract_inverted_index.the | 19, 24, 51, 59, 72, 82, 101, 110, 114, 122, 128, 154, 159, 205, 222, 230, 233, 269, 285 |
| abstract_inverted_index.too | 133 |
| abstract_inverted_index.via | 95 |
| abstract_inverted_index.24\% | 265 |
| abstract_inverted_index.33\% | 263 |
| abstract_inverted_index.5.1x | 282 |
| abstract_inverted_index.FPGA | 278 |
| abstract_inverted_index.STAP | 236 |
| abstract_inverted_index.base | 270, 286 |
| abstract_inverted_index.case | 271 |
| abstract_inverted_index.chip | 70, 79 |
| abstract_inverted_index.cuts | 250 |
| abstract_inverted_index.data | 31, 53, 85 |
| abstract_inverted_index.each | 33, 192 |
| abstract_inverted_index.four | 96 |
| abstract_inverted_index.from | 68 |
| abstract_inverted_index.full | 55, 93, 105, 119 |
| abstract_inverted_index.once | 67, 77 |
| abstract_inverted_index.only | 48, 197 |
| abstract_inverted_index.pass | 189 |
| abstract_inverted_index.read | 66 |
| abstract_inverted_index.show | 247 |
| abstract_inverted_index.some | 49 |
| abstract_inverted_index.than | 268, 284 |
| abstract_inverted_index.that | 58, 146, 177, 248 |
| abstract_inverted_index.work | 46 |
| abstract_inverted_index.1.36x | 259 |
| abstract_inverted_index.2.06x | 257 |
| abstract_inverted_index.CNNs' | 29 |
| abstract_inverted_index.Layer | 273 |
| abstract_inverted_index.Occam | 90, 249, 280 |
| abstract_inverted_index.While | 44 |
| abstract_inverted_index.case. | 287 |
| abstract_inverted_index.chips | 172 |
| abstract_inverted_index.final | 73 |
| abstract_inverted_index.focus | 17 |
| abstract_inverted_index.given | 150, 164 |
| abstract_inverted_index.image | 10, 27, 62 |
| abstract_inverted_index.input | 61 |
| abstract_inverted_index.large | 30, 134 |
| abstract_inverted_index.least | 123, 155 |
| abstract_inverted_index.often | 132 |
| abstract_inverted_index.poses | 39 |
| abstract_inverted_index.reuse | 56, 94, 120 |
| abstract_inverted_index.tools | 8 |
| abstract_inverted_index.using | 121 |
| abstract_inverted_index.which | 220 |
| abstract_inverted_index.(CNNs) | 3 |
| abstract_inverted_index.(STAP) | 219 |
| abstract_inverted_index.(i.e., | 191 |
| abstract_inverted_index.across | 232 |
| abstract_inverted_index.better | 260, 266, 283 |
| abstract_inverted_index.energy | 267 |
| abstract_inverted_index.images | 188 |
| abstract_inverted_index.incurs | 194 |
| abstract_inverted_index.input, | 35 |
| abstract_inverted_index.inputs | 200 |
| abstract_inverted_index.memory | 41 |
| abstract_inverted_index.neural | 1 |
| abstract_inverted_index.output | 38, 74 |
| abstract_inverted_index.remain | 184 |
| abstract_inverted_index.reside | 169 |
| abstract_inverted_index.result | 209 |
| abstract_inverted_index.reuse, | 54 |
| abstract_inverted_index.reuse. | 106 |
| abstract_inverted_index.stages | 224 |
| abstract_inverted_index.Because | 127 |
| abstract_inverted_index.Fusion, | 274 |
| abstract_inverted_index.Occam's | 167, 242 |
| abstract_inverted_index.because | 204 |
| abstract_inverted_index.capture | 92, 118 |
| abstract_inverted_index.closure | 112, 130, 183 |
| abstract_inverted_index.dynamic | 143 |
| abstract_inverted_index.filters | 64, 180 |
| abstract_inverted_index.forming | 173 |
| abstract_inverted_index.implies | 57 |
| abstract_inverted_index.improve | 226 |
| abstract_inverted_index.initial | 60 |
| abstract_inverted_index.latency | 25 |
| abstract_inverted_index.layer's | 34 |
| abstract_inverted_index.layers' | 84 |
| abstract_inverted_index.memory, | 139 |
| abstract_inverted_index.memory. | 125 |
| abstract_inverted_index.on-chip | 124, 138, 165, 185 |
| abstract_inverted_index.optimal | 206, 243 |
| abstract_inverted_index.problem | 21 |
| abstract_inverted_index.propose | 89, 141, 215 |
| abstract_inverted_index.through | 190 |
| abstract_inverted_index.traffic | 157, 196 |
| abstract_inverted_index.without | 80, 240 |
| abstract_inverted_index.written | 76 |
| abstract_inverted_index.achieves | 237, 256 |
| abstract_inverted_index.balanced | 238 |
| abstract_inverted_index.captures | 47 |
| abstract_inverted_index.changing | 241 |
| abstract_inverted_index.emerging | 5 |
| abstract_inverted_index.enormous | 52 |
| abstract_inverted_index.filters, | 36 |
| abstract_inverted_index.identify | 100, 109 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.off-chip | 156, 195, 251 |
| abstract_inverted_index.performs | 281 |
| abstract_inverted_index.pipeline | 175 |
| abstract_inverted_index.powerful | 7 |
| abstract_inverted_index.previous | 45 |
| abstract_inverted_index.problem. | 43 |
| abstract_inverted_index.spilling | 81 |
| abstract_inverted_index.algorithm | 145 |
| abstract_inverted_index.bandwidth | 42 |
| abstract_inverted_index.capacity. | 166 |
| abstract_inverted_index.condition | 103, 116 |
| abstract_inverted_index.different | 171, 187 |
| abstract_inverted_index.guarantee | 153 |
| abstract_inverted_index.important | 13, 20 |
| abstract_inverted_index.improving | 23 |
| abstract_inverted_index.necessary | 102 |
| abstract_inverted_index.off-chip. | 87 |
| abstract_inverted_index.optimally | 147 |
| abstract_inverted_index.outputs). | 202 |
| abstract_inverted_index.partition | 160, 193 |
| abstract_inverted_index.pipeline, | 213 |
| abstract_inverted_index.pipelines | 218, 239 |
| abstract_inverted_index.replicas. | 234 |
| abstract_inverted_index.staggered | 216 |
| abstract_inverted_index.transfers | 252 |
| abstract_inverted_index.bottleneck | 223 |
| abstract_inverted_index.boundaries | 161 |
| abstract_inverted_index.commercial | 14 |
| abstract_inverted_index.dependence | 111, 129, 182 |
| abstract_inverted_index.partitions | 148, 168, 207 |
| abstract_inverted_index.processing | 11 |
| abstract_inverted_index.replicates | 221 |
| abstract_inverted_index.staggering | 229 |
| abstract_inverted_index.sufficient | 115 |
| abstract_inverted_index.throughput | 227 |
| abstract_inverted_index.unbalanced | 212 |
| abstract_inverted_index.partition's | 179 |
| abstract_inverted_index.programming | 144 |
| abstract_inverted_index.simulations | 246 |
| abstract_inverted_index.Importantly, | 235 |
| abstract_inverted_index.asynchronous | 217 |
| abstract_inverted_index.intermediate | 83 |
| abstract_inverted_index.mini-batches | 231 |
| abstract_inverted_index.performance, | 261 |
| abstract_inverted_index.recognition. | 28 |
| abstract_inverted_index.Convolutional | 0 |
| abstract_inverted_index.applications. | 15 |
| abstract_inverted_index.partitioning. | 244 |
| abstract_inverted_index.respectively. | 275 |
| abstract_inverted_index.contributions. | 97 |
| abstract_inverted_index.implementation, | 279 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |