Occupancy Flow Fields for Motion Forecasting in Autonomous Driving Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/lra.2022.3151613
We propose Occupancy Flow Fields, a new representation for motion forecasting of multiple agents, an important task in autonomous driving. Our representation is a spatio-temporal grid with each grid cell containing both the probability of the cell being occupied by any agent, and a two-dimensional flow vector representing the direction and magnitude of the motion in that cell. Our method successfully mitigates shortcomings of the two most commonly-used representations for motion forecasting: trajectory sets and occupancy grids. Although occupancy grids efficiently represent the probabilistic location of many agents jointly, they do not capture agent motion and lose the agent identities. To this end, we propose a deep learning architecture that generates Occupancy Flow Fields with the help of a new flow trace loss that establishes consistency between the occupancy and flow predictions. We demonstrate the effectiveness of our approach using three metrics on occupancy prediction, motion estimation, and agent ID recovery. In addition, we introduce the problem of predicting speculative agents, which are currently-occluded agents that may appear in the future through dis-occlusion or by entering the field of view. We report experimental results on a large in-house autonomous driving dataset and the public INTERACTION dataset, and show that our model outperforms state-of-the-art models.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/lra.2022.3151613
- OA Status
- green
- Cited By
- 68
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4220795836
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4220795836Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/lra.2022.3151613Digital Object Identifier
- Title
-
Occupancy Flow Fields for Motion Forecasting in Autonomous DrivingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-14Full publication date if available
- Authors
-
Reza Mahjourian, Jinkyu Kim, Yuning Chai, Mingxing Tan, Ben Sapp, Dragomir AnguelovList of authors in order
- Landing page
-
https://doi.org/10.1109/lra.2022.3151613Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.03875Direct OA link when available
- Concepts
-
Occupancy, Motion (physics), Flow (mathematics), Computer science, Aeronautics, Artificial intelligence, Engineering, Architectural engineering, Mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
68Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 17, 2024: 27, 2023: 23, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4220795836 |
|---|---|
| doi | https://doi.org/10.1109/lra.2022.3151613 |
| ids.doi | https://doi.org/10.1109/lra.2022.3151613 |
| ids.openalex | https://openalex.org/W4220795836 |
| fwci | 6.79696291 |
| type | article |
| title | Occupancy Flow Fields for Motion Forecasting in Autonomous Driving |
| awards[0].id | https://openalex.org/G6006432325 |
| awards[0].funder_id | https://openalex.org/F4320322120 |
| awards[0].display_name | |
| awards[0].funder_award_id | NRF-2021R1C1C1009608 |
| awards[0].funder_display_name | National Research Foundation of Korea |
| biblio.issue | 2 |
| biblio.volume | 7 |
| biblio.last_page | 5646 |
| biblio.first_page | 5639 |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T11344 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.988099992275238 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Traffic Prediction and Management Techniques |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9872999787330627 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| funders[0].id | https://openalex.org/F4320322120 |
| funders[0].ror | https://ror.org/013aysd81 |
| funders[0].display_name | National Research Foundation of Korea |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C160331591 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8786617517471313 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7075743 |
| concepts[0].display_name | Occupancy |
| concepts[1].id | https://openalex.org/C104114177 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5626404881477356 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[1].display_name | Motion (physics) |
| concepts[2].id | https://openalex.org/C38349280 |
| concepts[2].level | 2 |
| concepts[2].score | 0.46569502353668213 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[2].display_name | Flow (mathematics) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4188447892665863 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C178802073 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3625950813293457 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8421 |
| concepts[4].display_name | Aeronautics |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35885605216026306 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.24203380942344666 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C170154142 |
| concepts[7].level | 1 |
| concepts[7].score | 0.11348292231559753 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[7].display_name | Architectural engineering |
| concepts[8].id | https://openalex.org/C57879066 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10967504978179932 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q41217 |
| concepts[8].display_name | Mechanics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.10447007417678833 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/occupancy |
| keywords[0].score | 0.8786617517471313 |
| keywords[0].display_name | Occupancy |
| keywords[1].id | https://openalex.org/keywords/motion |
| keywords[1].score | 0.5626404881477356 |
| keywords[1].display_name | Motion (physics) |
| keywords[2].id | https://openalex.org/keywords/flow |
| keywords[2].score | 0.46569502353668213 |
| keywords[2].display_name | Flow (mathematics) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4188447892665863 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/aeronautics |
| keywords[4].score | 0.3625950813293457 |
| keywords[4].display_name | Aeronautics |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.35885605216026306 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.24203380942344666 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/architectural-engineering |
| keywords[7].score | 0.11348292231559753 |
| keywords[7].display_name | Architectural engineering |
| keywords[8].id | https://openalex.org/keywords/mechanics |
| keywords[8].score | 0.10967504978179932 |
| keywords[8].display_name | Mechanics |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.10447007417678833 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1109/lra.2022.3151613 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210169774 |
| locations[0].source.issn | 2377-3766 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2377-3766 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Robotics and Automation Letters |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Robotics and Automation Letters |
| locations[0].landing_page_url | https://doi.org/10.1109/lra.2022.3151613 |
| locations[1].id | pmh:oai:arXiv.org:2203.03875 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2203.03875 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2203.03875 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5023703380 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4457-8395 |
| authorships[0].author.display_name | Reza Mahjourian |
| authorships[0].affiliations[0].raw_affiliation_string | Waymo, Mountain View, CA, USA |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Reza Mahjourian |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Waymo, Mountain View, CA, USA |
| authorships[1].author.id | https://openalex.org/A5061842716 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6520-2074 |
| authorships[1].author.display_name | Jinkyu Kim |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I197347611 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Korea University, Seoul, Korea |
| authorships[1].institutions[0].id | https://openalex.org/I197347611 |
| authorships[1].institutions[0].ror | https://ror.org/047dqcg40 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I197347611 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Korea University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinkyu Kim |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Korea University, Seoul, Korea |
| authorships[2].author.id | https://openalex.org/A5079961895 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yuning Chai |
| authorships[2].affiliations[0].raw_affiliation_string | Waymo, Mountain View, CA, USA |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuning Chai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Waymo, Mountain View, CA, USA |
| authorships[3].author.id | https://openalex.org/A5110774377 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Mingxing Tan |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[3].affiliations[0].raw_affiliation_string | Google Brain, Sunnyvale, CA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[3].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Google (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mingxing Tan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Google Brain, Sunnyvale, CA, USA |
| authorships[4].author.id | https://openalex.org/A5031227461 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ben Sapp |
| authorships[4].affiliations[0].raw_affiliation_string | Waymo, Mountain View, CA, USA |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ben Sapp |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Waymo, Mountain View, CA, USA |
| authorships[5].author.id | https://openalex.org/A5081024054 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Dragomir Anguelov |
| authorships[5].affiliations[0].raw_affiliation_string | Waymo, Mountain View, CA, USA |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Dragomir Anguelov |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Waymo, Mountain View, CA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.03875 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Occupancy Flow Fields for Motion Forecasting in Autonomous Driving |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W4282043467, https://openalex.org/W2105697914, https://openalex.org/W3093197249, https://openalex.org/W1968324288, https://openalex.org/W1540010871, https://openalex.org/W3023979140, https://openalex.org/W3177545769, https://openalex.org/W2904068067, https://openalex.org/W1565491139, https://openalex.org/W2202433167 |
| cited_by_count | 68 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 17 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 27 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 23 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.03875 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.03875 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.03875 |
| primary_location.id | doi:10.1109/lra.2022.3151613 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210169774 |
| primary_location.source.issn | 2377-3766 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2377-3766 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Robotics and Automation Letters |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Robotics and Automation Letters |
| primary_location.landing_page_url | https://doi.org/10.1109/lra.2022.3151613 |
| publication_date | 2022-02-14 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6768870957, https://openalex.org/W6634211352, https://openalex.org/W6775168941, https://openalex.org/W6769043036, https://openalex.org/W2955189650, https://openalex.org/W2967177252, https://openalex.org/W3035671534, https://openalex.org/W2905173465, https://openalex.org/W3172477795, https://openalex.org/W2963759562, https://openalex.org/W6769377150, https://openalex.org/W6755864109, https://openalex.org/W2167052694, https://openalex.org/W3114753236, https://openalex.org/W2532516272, https://openalex.org/W2769282630, https://openalex.org/W3090166818, https://openalex.org/W3116651890, https://openalex.org/W3156216502, https://openalex.org/W2968296999, https://openalex.org/W4281685999, https://openalex.org/W3034971973, https://openalex.org/W2136891917, https://openalex.org/W6631190155, https://openalex.org/W2412782625, https://openalex.org/W2780861787, https://openalex.org/W3208318476, https://openalex.org/W1567193306, https://openalex.org/W3000520642, https://openalex.org/W3029177463, https://openalex.org/W2899302124, https://openalex.org/W3028769608, https://openalex.org/W3012478636, https://openalex.org/W2980087597, https://openalex.org/W2898900571 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 5, 23, 43, 105, 118, 185 |
| abstract_inverted_index.ID | 149 |
| abstract_inverted_index.In | 151 |
| abstract_inverted_index.To | 100 |
| abstract_inverted_index.We | 0, 132, 180 |
| abstract_inverted_index.an | 14 |
| abstract_inverted_index.by | 39, 174 |
| abstract_inverted_index.do | 90 |
| abstract_inverted_index.in | 17, 55, 168 |
| abstract_inverted_index.is | 22 |
| abstract_inverted_index.of | 11, 34, 52, 63, 85, 117, 136, 157, 178 |
| abstract_inverted_index.on | 142, 184 |
| abstract_inverted_index.or | 173 |
| abstract_inverted_index.we | 103, 153 |
| abstract_inverted_index.Our | 20, 58 |
| abstract_inverted_index.and | 42, 50, 74, 95, 129, 147, 191, 196 |
| abstract_inverted_index.any | 40 |
| abstract_inverted_index.are | 162 |
| abstract_inverted_index.for | 8, 69 |
| abstract_inverted_index.may | 166 |
| abstract_inverted_index.new | 6, 119 |
| abstract_inverted_index.not | 91 |
| abstract_inverted_index.our | 137, 199 |
| abstract_inverted_index.the | 32, 35, 48, 53, 64, 82, 97, 115, 127, 134, 155, 169, 176, 192 |
| abstract_inverted_index.two | 65 |
| abstract_inverted_index.Flow | 3, 112 |
| abstract_inverted_index.both | 31 |
| abstract_inverted_index.cell | 29, 36 |
| abstract_inverted_index.deep | 106 |
| abstract_inverted_index.each | 27 |
| abstract_inverted_index.end, | 102 |
| abstract_inverted_index.flow | 45, 120, 130 |
| abstract_inverted_index.grid | 25, 28 |
| abstract_inverted_index.help | 116 |
| abstract_inverted_index.lose | 96 |
| abstract_inverted_index.loss | 122 |
| abstract_inverted_index.many | 86 |
| abstract_inverted_index.most | 66 |
| abstract_inverted_index.sets | 73 |
| abstract_inverted_index.show | 197 |
| abstract_inverted_index.task | 16 |
| abstract_inverted_index.that | 56, 109, 123, 165, 198 |
| abstract_inverted_index.they | 89 |
| abstract_inverted_index.this | 101 |
| abstract_inverted_index.with | 26, 114 |
| abstract_inverted_index.agent | 93, 98, 148 |
| abstract_inverted_index.being | 37 |
| abstract_inverted_index.cell. | 57 |
| abstract_inverted_index.field | 177 |
| abstract_inverted_index.grids | 79 |
| abstract_inverted_index.large | 186 |
| abstract_inverted_index.model | 200 |
| abstract_inverted_index.three | 140 |
| abstract_inverted_index.trace | 121 |
| abstract_inverted_index.using | 139 |
| abstract_inverted_index.view. | 179 |
| abstract_inverted_index.which | 161 |
| abstract_inverted_index.Fields | 113 |
| abstract_inverted_index.agent, | 41 |
| abstract_inverted_index.agents | 87, 164 |
| abstract_inverted_index.appear | 167 |
| abstract_inverted_index.future | 170 |
| abstract_inverted_index.grids. | 76 |
| abstract_inverted_index.method | 59 |
| abstract_inverted_index.motion | 9, 54, 70, 94, 145 |
| abstract_inverted_index.public | 193 |
| abstract_inverted_index.report | 181 |
| abstract_inverted_index.vector | 46 |
| abstract_inverted_index.Fields, | 4 |
| abstract_inverted_index.agents, | 13, 160 |
| abstract_inverted_index.between | 126 |
| abstract_inverted_index.capture | 92 |
| abstract_inverted_index.dataset | 190 |
| abstract_inverted_index.driving | 189 |
| abstract_inverted_index.metrics | 141 |
| abstract_inverted_index.models. | 203 |
| abstract_inverted_index.problem | 156 |
| abstract_inverted_index.propose | 1, 104 |
| abstract_inverted_index.results | 183 |
| abstract_inverted_index.through | 171 |
| abstract_inverted_index.Although | 77 |
| abstract_inverted_index.approach | 138 |
| abstract_inverted_index.dataset, | 195 |
| abstract_inverted_index.driving. | 19 |
| abstract_inverted_index.entering | 175 |
| abstract_inverted_index.in-house | 187 |
| abstract_inverted_index.jointly, | 88 |
| abstract_inverted_index.learning | 107 |
| abstract_inverted_index.location | 84 |
| abstract_inverted_index.multiple | 12 |
| abstract_inverted_index.occupied | 38 |
| abstract_inverted_index.Occupancy | 2, 111 |
| abstract_inverted_index.addition, | 152 |
| abstract_inverted_index.direction | 49 |
| abstract_inverted_index.generates | 110 |
| abstract_inverted_index.important | 15 |
| abstract_inverted_index.introduce | 154 |
| abstract_inverted_index.magnitude | 51 |
| abstract_inverted_index.mitigates | 61 |
| abstract_inverted_index.occupancy | 75, 78, 128, 143 |
| abstract_inverted_index.recovery. | 150 |
| abstract_inverted_index.represent | 81 |
| abstract_inverted_index.autonomous | 18, 188 |
| abstract_inverted_index.containing | 30 |
| abstract_inverted_index.predicting | 158 |
| abstract_inverted_index.trajectory | 72 |
| abstract_inverted_index.INTERACTION | 194 |
| abstract_inverted_index.consistency | 125 |
| abstract_inverted_index.demonstrate | 133 |
| abstract_inverted_index.efficiently | 80 |
| abstract_inverted_index.establishes | 124 |
| abstract_inverted_index.estimation, | 146 |
| abstract_inverted_index.forecasting | 10 |
| abstract_inverted_index.identities. | 99 |
| abstract_inverted_index.outperforms | 201 |
| abstract_inverted_index.prediction, | 144 |
| abstract_inverted_index.probability | 33 |
| abstract_inverted_index.speculative | 159 |
| abstract_inverted_index.architecture | 108 |
| abstract_inverted_index.experimental | 182 |
| abstract_inverted_index.forecasting: | 71 |
| abstract_inverted_index.predictions. | 131 |
| abstract_inverted_index.representing | 47 |
| abstract_inverted_index.shortcomings | 62 |
| abstract_inverted_index.successfully | 60 |
| abstract_inverted_index.commonly-used | 67 |
| abstract_inverted_index.dis-occlusion | 172 |
| abstract_inverted_index.effectiveness | 135 |
| abstract_inverted_index.probabilistic | 83 |
| abstract_inverted_index.representation | 7, 21 |
| abstract_inverted_index.representations | 68 |
| abstract_inverted_index.spatio-temporal | 24 |
| abstract_inverted_index.two-dimensional | 44 |
| abstract_inverted_index.state-of-the-art | 202 |
| abstract_inverted_index.currently-occluded | 163 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.96848909 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |