OCHADAI at SMM4H-2021 Task 5: Classifying self-reporting tweets on potential cases of COVID-19 by ensembling pre-trained language models Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2021.smm4h-1.25
Since the outbreak of coronavirus at the end of 2019, there have been numerous studies on coro- navirus in the NLP arena. Meanwhile, Twitter has been a valuable source of news and a pub- lic medium for the conveyance of information and personal expression. This paper describes the system developed by the Ochadai team for the Social Media Mining for Health Appli- cations (SMM4H) 2021 Task 5, which aims to automatically distinguish English tweets that self-report potential cases of COVID-19 from those that do not. We proposed a model ensemble that leverages pre-trained represen- tations from COVID-Twitter-BERT (Müller et al., 2020), RoBERTa (Liu et al., 2019), and Twitter-RoBERTa (Glazkova et al., 2021). Our model obtained F1-scores of 76% on the test set in the evaluation phase, and 77.5% in the post-evaluation phase.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2021.smm4h-1.25
- https://aclanthology.org/2021.smm4h-1.25.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3172360059
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3172360059Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2021.smm4h-1.25Digital Object Identifier
- Title
-
OCHADAI at SMM4H-2021 Task 5: Classifying self-reporting tweets on potential cases of COVID-19 by ensembling pre-trained language modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Ying Luo, Lis Kanashiro Pereira, Ichiro KobayashiList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2021.smm4h-1.25Publisher landing page
- PDF URL
-
https://aclanthology.org/2021.smm4h-1.25.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2021.smm4h-1.25.pdfDirect OA link when available
- Concepts
-
Coronavirus disease 2019 (COVID-19), Task (project management), Social media, Computer science, Set (abstract data type), Artificial intelligence, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), F1 score, Sentiment analysis, Natural language processing, Test set, Test (biology), World Wide Web, Medicine, Engineering, Biology, Pathology, Disease, Infectious disease (medical specialty), Paleontology, Systems engineering, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1Per-year citation counts (last 5 years)
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3172360059 |
|---|---|
| doi | https://doi.org/10.18653/v1/2021.smm4h-1.25 |
| ids.doi | https://doi.org/10.18653/v1/2021.smm4h-1.25 |
| ids.mag | 3172360059 |
| ids.openalex | https://openalex.org/W3172360059 |
| fwci | 0.14110358 |
| type | article |
| title | OCHADAI at SMM4H-2021 Task 5: Classifying self-reporting tweets on potential cases of COVID-19 by ensembling pre-trained language models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 125 |
| biblio.first_page | 123 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T11147 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Misinformation and Its Impacts |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9926999807357788 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C3008058167 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7714447379112244 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[0].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[1].id | https://openalex.org/C2780451532 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7328536510467529 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[1].display_name | Task (project management) |
| concepts[2].id | https://openalex.org/C518677369 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7222221493721008 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[2].display_name | Social media |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6819005608558655 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C177264268 |
| concepts[4].level | 2 |
| concepts[4].score | 0.545103132724762 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[4].display_name | Set (abstract data type) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.520197331905365 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C3007834351 |
| concepts[6].level | 5 |
| concepts[6].score | 0.4745027720928192 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[6].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[7].id | https://openalex.org/C148524875 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46674782037734985 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6975395 |
| concepts[7].display_name | F1 score |
| concepts[8].id | https://openalex.org/C66402592 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4536823332309723 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[8].display_name | Sentiment analysis |
| concepts[9].id | https://openalex.org/C204321447 |
| concepts[9].level | 1 |
| concepts[9].score | 0.45117419958114624 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[9].display_name | Natural language processing |
| concepts[10].id | https://openalex.org/C169903167 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4476635456085205 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[10].display_name | Test set |
| concepts[11].id | https://openalex.org/C2777267654 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4415373206138611 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3519023 |
| concepts[11].display_name | Test (biology) |
| concepts[12].id | https://openalex.org/C136764020 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3413277566432953 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[12].display_name | World Wide Web |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.12017503380775452 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.09135979413986206 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08088922500610352 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C142724271 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07018056511878967 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[16].display_name | Pathology |
| concepts[17].id | https://openalex.org/C2779134260 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[17].display_name | Disease |
| concepts[18].id | https://openalex.org/C524204448 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[18].display_name | Infectious disease (medical specialty) |
| concepts[19].id | https://openalex.org/C151730666 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[19].display_name | Paleontology |
| concepts[20].id | https://openalex.org/C201995342 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[20].display_name | Systems engineering |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[0].score | 0.7714447379112244 |
| keywords[0].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.7328536510467529 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/social-media |
| keywords[2].score | 0.7222221493721008 |
| keywords[2].display_name | Social media |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6819005608558655 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/set |
| keywords[4].score | 0.545103132724762 |
| keywords[4].display_name | Set (abstract data type) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.520197331905365 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[6].score | 0.4745027720928192 |
| keywords[6].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[7].id | https://openalex.org/keywords/f1-score |
| keywords[7].score | 0.46674782037734985 |
| keywords[7].display_name | F1 score |
| keywords[8].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[8].score | 0.4536823332309723 |
| keywords[8].display_name | Sentiment analysis |
| keywords[9].id | https://openalex.org/keywords/natural-language-processing |
| keywords[9].score | 0.45117419958114624 |
| keywords[9].display_name | Natural language processing |
| keywords[10].id | https://openalex.org/keywords/test-set |
| keywords[10].score | 0.4476635456085205 |
| keywords[10].display_name | Test set |
| keywords[11].id | https://openalex.org/keywords/test |
| keywords[11].score | 0.4415373206138611 |
| keywords[11].display_name | Test (biology) |
| keywords[12].id | https://openalex.org/keywords/world-wide-web |
| keywords[12].score | 0.3413277566432953 |
| keywords[12].display_name | World Wide Web |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.12017503380775452 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.09135979413986206 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/biology |
| keywords[15].score | 0.08088922500610352 |
| keywords[15].display_name | Biology |
| keywords[16].id | https://openalex.org/keywords/pathology |
| keywords[16].score | 0.07018056511878967 |
| keywords[16].display_name | Pathology |
| language | en |
| locations[0].id | doi:10.18653/v1/2021.smm4h-1.25 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2021.smm4h-1.25.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2021.smm4h-1.25 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101420290 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2380-1567 |
| authorships[0].author.display_name | Ying Luo |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I26120043 |
| authorships[0].affiliations[0].raw_affiliation_string | Ochanomizu University, Japan |
| authorships[0].institutions[0].id | https://openalex.org/I26120043 |
| authorships[0].institutions[0].ror | https://ror.org/03599d813 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I26120043 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Ochanomizu University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ying Luo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Ochanomizu University, Japan |
| authorships[1].author.id | https://openalex.org/A5009376258 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Lis Kanashiro Pereira |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I26120043 |
| authorships[1].affiliations[0].raw_affiliation_string | Ochanomizu University, Japan |
| authorships[1].institutions[0].id | https://openalex.org/I26120043 |
| authorships[1].institutions[0].ror | https://ror.org/03599d813 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I26120043 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Ochanomizu University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lis Pereira |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Ochanomizu University, Japan |
| authorships[2].author.id | https://openalex.org/A5089123620 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4956-4010 |
| authorships[2].author.display_name | Ichiro Kobayashi |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I26120043 |
| authorships[2].affiliations[0].raw_affiliation_string | Ochanomizu University, Japan |
| authorships[2].institutions[0].id | https://openalex.org/I26120043 |
| authorships[2].institutions[0].ror | https://ror.org/03599d813 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I26120043 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Ochanomizu University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Kobayashi Ichiro |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ochanomizu University, Japan |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2021.smm4h-1.25.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | OCHADAI at SMM4H-2021 Task 5: Classifying self-reporting tweets on potential cases of COVID-19 by ensembling pre-trained language models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2548633793, https://openalex.org/W3013279174, https://openalex.org/W2135277937, https://openalex.org/W3099922831, https://openalex.org/W4385571733, https://openalex.org/W4223433861, https://openalex.org/W4388419449, https://openalex.org/W4285223746, https://openalex.org/W3080936386 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2021.smm4h-1.25 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2021.smm4h-1.25.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2021.smm4h-1.25 |
| primary_location.id | doi:10.18653/v1/2021.smm4h-1.25 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2021.smm4h-1.25.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2021.smm4h-1.25 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3114099346, https://openalex.org/W3024622987, https://openalex.org/W2965373594, https://openalex.org/W3158488293, https://openalex.org/W4324392584 |
| referenced_works_count | 5 |
| abstract_inverted_index.a | 26, 32, 87 |
| abstract_inverted_index.5, | 66 |
| abstract_inverted_index.We | 85 |
| abstract_inverted_index.at | 5 |
| abstract_inverted_index.by | 50 |
| abstract_inverted_index.do | 83 |
| abstract_inverted_index.et | 98, 103, 109 |
| abstract_inverted_index.in | 18, 122, 128 |
| abstract_inverted_index.of | 3, 8, 29, 39, 78, 116 |
| abstract_inverted_index.on | 15, 118 |
| abstract_inverted_index.to | 69 |
| abstract_inverted_index.76% | 117 |
| abstract_inverted_index.NLP | 20 |
| abstract_inverted_index.Our | 112 |
| abstract_inverted_index.and | 31, 41, 106, 126 |
| abstract_inverted_index.end | 7 |
| abstract_inverted_index.for | 36, 54, 59 |
| abstract_inverted_index.has | 24 |
| abstract_inverted_index.lic | 34 |
| abstract_inverted_index.set | 121 |
| abstract_inverted_index.the | 1, 6, 19, 37, 47, 51, 55, 119, 123, 129 |
| abstract_inverted_index.(Liu | 102 |
| abstract_inverted_index.2021 | 64 |
| abstract_inverted_index.Task | 65 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.aims | 68 |
| abstract_inverted_index.al., | 99, 104, 110 |
| abstract_inverted_index.been | 12, 25 |
| abstract_inverted_index.from | 80, 95 |
| abstract_inverted_index.have | 11 |
| abstract_inverted_index.news | 30 |
| abstract_inverted_index.not. | 84 |
| abstract_inverted_index.pub- | 33 |
| abstract_inverted_index.team | 53 |
| abstract_inverted_index.test | 120 |
| abstract_inverted_index.that | 74, 82, 90 |
| abstract_inverted_index.2019, | 9 |
| abstract_inverted_index.77.5% | 127 |
| abstract_inverted_index.Media | 57 |
| abstract_inverted_index.Since | 0 |
| abstract_inverted_index.cases | 77 |
| abstract_inverted_index.coro- | 16 |
| abstract_inverted_index.model | 88, 113 |
| abstract_inverted_index.paper | 45 |
| abstract_inverted_index.there | 10 |
| abstract_inverted_index.those | 81 |
| abstract_inverted_index.which | 67 |
| abstract_inverted_index.2019), | 105 |
| abstract_inverted_index.2020), | 100 |
| abstract_inverted_index.2021). | 111 |
| abstract_inverted_index.Appli- | 61 |
| abstract_inverted_index.Health | 60 |
| abstract_inverted_index.Mining | 58 |
| abstract_inverted_index.Social | 56 |
| abstract_inverted_index.arena. | 21 |
| abstract_inverted_index.medium | 35 |
| abstract_inverted_index.phase, | 125 |
| abstract_inverted_index.phase. | 131 |
| abstract_inverted_index.source | 28 |
| abstract_inverted_index.system | 48 |
| abstract_inverted_index.tweets | 73 |
| abstract_inverted_index.(SMM4H) | 63 |
| abstract_inverted_index.English | 72 |
| abstract_inverted_index.Ochadai | 52 |
| abstract_inverted_index.RoBERTa | 101 |
| abstract_inverted_index.Twitter | 23 |
| abstract_inverted_index.cations | 62 |
| abstract_inverted_index.navirus | 17 |
| abstract_inverted_index.studies | 14 |
| abstract_inverted_index.tations | 94 |
| abstract_inverted_index.(Müller | 97 |
| abstract_inverted_index.COVID-19 | 79 |
| abstract_inverted_index.ensemble | 89 |
| abstract_inverted_index.numerous | 13 |
| abstract_inverted_index.obtained | 114 |
| abstract_inverted_index.outbreak | 2 |
| abstract_inverted_index.personal | 42 |
| abstract_inverted_index.proposed | 86 |
| abstract_inverted_index.valuable | 27 |
| abstract_inverted_index.(Glazkova | 108 |
| abstract_inverted_index.F1-scores | 115 |
| abstract_inverted_index.describes | 46 |
| abstract_inverted_index.developed | 49 |
| abstract_inverted_index.leverages | 91 |
| abstract_inverted_index.potential | 76 |
| abstract_inverted_index.represen- | 93 |
| abstract_inverted_index.Meanwhile, | 22 |
| abstract_inverted_index.conveyance | 38 |
| abstract_inverted_index.evaluation | 124 |
| abstract_inverted_index.coronavirus | 4 |
| abstract_inverted_index.distinguish | 71 |
| abstract_inverted_index.expression. | 43 |
| abstract_inverted_index.information | 40 |
| abstract_inverted_index.pre-trained | 92 |
| abstract_inverted_index.self-report | 75 |
| abstract_inverted_index.automatically | 70 |
| abstract_inverted_index.Twitter-RoBERTa | 107 |
| abstract_inverted_index.post-evaluation | 130 |
| abstract_inverted_index.COVID-Twitter-BERT | 96 |
| cited_by_percentile_year.max | 93 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.53585413 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |