Omics Imagification: Transforming High-throughput Molecular Representation of a Cell into an Image Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-1919175/v1
Different omics profiles, depending on the underlying technology, encompass measurements of several hundred to several thousands of molecules in a biological sample or a cell. This study develops upon the concept of "omics imagification" as a process of transforming a vector representing these numerical measurements into an image with a one-to-one relationship with the corresponding sample. The proposed imagification process transforms a high-dimensional vector of molecular measurements into a two-dimensional RGB image to enable holistic molecular representation of a biological sample and to improve the classification of different biological phenotypes using automated image recognition methods in computer vision. A transformed image represents 2D-coordinates of molecules in a neighbour embedded space representing molecular abundance and gene intensity. The proposed method was applied to single-cell RNA sequencing (scRNA-seq) data to "imagify" gene expression profiles of individual cells. Our results show that a simple convolutional neural network trained on these single-cell transcriptomics images accurately classifies diverse cell types outperforming the best-performing scRNA-seq classifiers such as Support Vector Machine and Random Forrest.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-1919175/v1
- https://www.researchsquare.com/article/rs-1919175/latest.pdf
- OA Status
- green
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4289653994
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4289653994Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-1919175/v1Digital Object Identifier
- Title
-
Omics Imagification: Transforming High-throughput Molecular Representation of a Cell into an ImageWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-03Full publication date if available
- Authors
-
Derong Liu, Seid Miad Zandavi, Yuk Ying Chung, Ali Anaissi, Fatemeh VafaeeList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-1919175/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-1919175/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-1919175/latest.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Pattern recognition (psychology), Computer science, Convolutional neural network, Representation (politics), Support vector machine, Image (mathematics), Sample (material), Computational biology, Process (computing), Expression (computer science), Biology, Chemistry, Political science, Politics, Chromatography, Operating system, Law, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4289653994 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-1919175/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-1919175/v1 |
| ids.openalex | https://openalex.org/W4289653994 |
| fwci | 0.0 |
| type | preprint |
| title | Omics Imagification: Transforming High-throughput Molecular Representation of a Cell into an Image |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| topics[2].id | https://openalex.org/T10885 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9650999903678894 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Gene expression and cancer classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6217573881149292 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5929722785949707 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5806421041488647 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5420719981193542 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C2776359362 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5315926671028137 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[4].display_name | Representation (politics) |
| concepts[5].id | https://openalex.org/C12267149 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5084904432296753 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[5].display_name | Support vector machine |
| concepts[6].id | https://openalex.org/C115961682 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49874305725097656 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[6].display_name | Image (mathematics) |
| concepts[7].id | https://openalex.org/C198531522 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47763529419898987 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[7].display_name | Sample (material) |
| concepts[8].id | https://openalex.org/C70721500 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4753836393356323 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[8].display_name | Computational biology |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.465705931186676 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C90559484 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42363035678863525 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q778379 |
| concepts[10].display_name | Expression (computer science) |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.25773441791534424 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09255841374397278 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C17744445 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[13].display_name | Political science |
| concepts[14].id | https://openalex.org/C94625758 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[14].display_name | Politics |
| concepts[15].id | https://openalex.org/C43617362 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[15].display_name | Chromatography |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C199360897 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[18].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6217573881149292 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.5929722785949707 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5806421041488647 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5420719981193542 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/representation |
| keywords[4].score | 0.5315926671028137 |
| keywords[4].display_name | Representation (politics) |
| keywords[5].id | https://openalex.org/keywords/support-vector-machine |
| keywords[5].score | 0.5084904432296753 |
| keywords[5].display_name | Support vector machine |
| keywords[6].id | https://openalex.org/keywords/image |
| keywords[6].score | 0.49874305725097656 |
| keywords[6].display_name | Image (mathematics) |
| keywords[7].id | https://openalex.org/keywords/sample |
| keywords[7].score | 0.47763529419898987 |
| keywords[7].display_name | Sample (material) |
| keywords[8].id | https://openalex.org/keywords/computational-biology |
| keywords[8].score | 0.4753836393356323 |
| keywords[8].display_name | Computational biology |
| keywords[9].id | https://openalex.org/keywords/process |
| keywords[9].score | 0.465705931186676 |
| keywords[9].display_name | Process (computing) |
| keywords[10].id | https://openalex.org/keywords/expression |
| keywords[10].score | 0.42363035678863525 |
| keywords[10].display_name | Expression (computer science) |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.25773441791534424 |
| keywords[11].display_name | Biology |
| keywords[12].id | https://openalex.org/keywords/chemistry |
| keywords[12].score | 0.09255841374397278 |
| keywords[12].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-1919175/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-1919175/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-1919175/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5004057129 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3715-4778 |
| authorships[0].author.display_name | Derong Liu |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science, The University of Sydney, Camperdown, Sydney, 2006, NSW, Australia. |
| authorships[0].institutions[0].id | https://openalex.org/I129604602 |
| authorships[0].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | The University of Sydney |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Derong Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science, The University of Sydney, Camperdown, Sydney, 2006, NSW, Australia. |
| authorships[1].author.id | https://openalex.org/A5044200395 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3015-5962 |
| authorships[1].author.display_name | Seid Miad Zandavi |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I31746571 |
| authorships[1].affiliations[0].raw_affiliation_string | UNSW Data Science Hub, The University of New South Wales (UNSW), Kensington, Sydney, 2052, NSW, Australia. |
| authorships[1].institutions[0].id | https://openalex.org/I31746571 |
| authorships[1].institutions[0].ror | https://ror.org/03r8z3t63 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I31746571 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | UNSW Sydney |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Seid Miad Zandavi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | UNSW Data Science Hub, The University of New South Wales (UNSW), Kensington, Sydney, 2052, NSW, Australia. |
| authorships[2].author.id | https://openalex.org/A5045843249 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3158-9650 |
| authorships[2].author.display_name | Yuk Ying Chung |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science, The University of Sydney, Camperdown, Sydney, 2006, NSW, Australia. |
| authorships[2].institutions[0].id | https://openalex.org/I129604602 |
| authorships[2].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | The University of Sydney |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vera Chung |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science, The University of Sydney, Camperdown, Sydney, 2006, NSW, Australia. |
| authorships[3].author.id | https://openalex.org/A5005831779 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8864-0314 |
| authorships[3].author.display_name | Ali Anaissi |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I129604602 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science, The University of Sydney, Camperdown, Sydney, 2006, NSW, Australia. |
| authorships[3].institutions[0].id | https://openalex.org/I129604602 |
| authorships[3].institutions[0].ror | https://ror.org/0384j8v12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I129604602 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | The University of Sydney |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ali Anaissi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science, The University of Sydney, Camperdown, Sydney, 2006, NSW, Australia. |
| authorships[4].author.id | https://openalex.org/A5090363651 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7521-2417 |
| authorships[4].author.display_name | Fatemeh Vafaee |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I31746571 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Biotechnology and Biomolecular Sciences, The University of New South Wales (UNSW), Kensington, Sydney, 2052, NSW, Australia. |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I31746571 |
| authorships[4].affiliations[1].raw_affiliation_string | UNSW Data Science Hub, The University of New South Wales (UNSW), Kensington, Sydney, 2052, NSW, Australia. |
| authorships[4].institutions[0].id | https://openalex.org/I31746571 |
| authorships[4].institutions[0].ror | https://ror.org/03r8z3t63 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I31746571 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | UNSW Sydney |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Fatemeh Vafaee |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Biotechnology and Biomolecular Sciences, The University of New South Wales (UNSW), Kensington, Sydney, 2052, NSW, Australia., UNSW Data Science Hub, The University of New South Wales (UNSW), Kensington, Sydney, 2052, NSW, Australia. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-1919175/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Omics Imagification: Transforming High-throughput Molecular Representation of a Cell into an Image |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W4285503465, https://openalex.org/W3208266890, https://openalex.org/W2996933976, https://openalex.org/W2099369243, https://openalex.org/W2345184372, https://openalex.org/W2120008580, https://openalex.org/W4223656335, https://openalex.org/W2136184105, https://openalex.org/W2187500075, https://openalex.org/W3193301557 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-1919175/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-1919175/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1919175/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-1919175/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-1919175/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1919175/v1 |
| publication_date | 2022-08-03 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W4282923574, https://openalex.org/W4240021282, https://openalex.org/W1985177823, https://openalex.org/W4205902690, https://openalex.org/W6600025664, https://openalex.org/W600489529, https://openalex.org/W4211019019, https://openalex.org/W2323326409, https://openalex.org/W4254389654, https://openalex.org/W1967327758, https://openalex.org/W1580018887, https://openalex.org/W3013462789, https://openalex.org/W2964962196, https://openalex.org/W2168353136, https://openalex.org/W1964940342, https://openalex.org/W2796170779, https://openalex.org/W2989716250, https://openalex.org/W2949099455, https://openalex.org/W4205529833, https://openalex.org/W4231109964, https://openalex.org/W2931036699, https://openalex.org/W2102771000, https://openalex.org/W3087235018, https://openalex.org/W2035698667, https://openalex.org/W2109364787, https://openalex.org/W2612502013, https://openalex.org/W2155632266, https://openalex.org/W3137852009, https://openalex.org/W1991445071, https://openalex.org/W2159772324, https://openalex.org/W2990285535, https://openalex.org/W2946365419, https://openalex.org/W2187089797, https://openalex.org/W2139399084, https://openalex.org/W2945020349, https://openalex.org/W4246623349, https://openalex.org/W2040895929, https://openalex.org/W2982474113, https://openalex.org/W4311801546 |
| referenced_works_count | 39 |
| abstract_inverted_index.A | 99 |
| abstract_inverted_index.a | 20, 24, 36, 40, 50, 62, 69, 79, 107, 140 |
| abstract_inverted_index.an | 47 |
| abstract_inverted_index.as | 35, 162 |
| abstract_inverted_index.in | 19, 96, 106 |
| abstract_inverted_index.of | 11, 17, 32, 38, 65, 78, 87, 104, 133 |
| abstract_inverted_index.on | 5, 146 |
| abstract_inverted_index.or | 23 |
| abstract_inverted_index.to | 14, 73, 83, 122, 128 |
| abstract_inverted_index.Our | 136 |
| abstract_inverted_index.RGB | 71 |
| abstract_inverted_index.RNA | 124 |
| abstract_inverted_index.The | 57, 117 |
| abstract_inverted_index.and | 82, 114, 166 |
| abstract_inverted_index.the | 6, 30, 54, 85, 157 |
| abstract_inverted_index.was | 120 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.cell | 154 |
| abstract_inverted_index.data | 127 |
| abstract_inverted_index.gene | 115, 130 |
| abstract_inverted_index.into | 46, 68 |
| abstract_inverted_index.show | 138 |
| abstract_inverted_index.such | 161 |
| abstract_inverted_index.that | 139 |
| abstract_inverted_index.upon | 29 |
| abstract_inverted_index.with | 49, 53 |
| abstract_inverted_index.cell. | 25 |
| abstract_inverted_index.image | 48, 72, 93, 101 |
| abstract_inverted_index.omics | 2 |
| abstract_inverted_index.space | 110 |
| abstract_inverted_index.study | 27 |
| abstract_inverted_index.these | 43, 147 |
| abstract_inverted_index.types | 155 |
| abstract_inverted_index.using | 91 |
| abstract_inverted_index."omics | 33 |
| abstract_inverted_index.Random | 167 |
| abstract_inverted_index.Vector | 164 |
| abstract_inverted_index.cells. | 135 |
| abstract_inverted_index.enable | 74 |
| abstract_inverted_index.images | 150 |
| abstract_inverted_index.method | 119 |
| abstract_inverted_index.neural | 143 |
| abstract_inverted_index.sample | 22, 81 |
| abstract_inverted_index.simple | 141 |
| abstract_inverted_index.vector | 41, 64 |
| abstract_inverted_index.Machine | 165 |
| abstract_inverted_index.Support | 163 |
| abstract_inverted_index.applied | 121 |
| abstract_inverted_index.concept | 31 |
| abstract_inverted_index.diverse | 153 |
| abstract_inverted_index.hundred | 13 |
| abstract_inverted_index.improve | 84 |
| abstract_inverted_index.methods | 95 |
| abstract_inverted_index.network | 144 |
| abstract_inverted_index.process | 37, 60 |
| abstract_inverted_index.results | 137 |
| abstract_inverted_index.sample. | 56 |
| abstract_inverted_index.several | 12, 15 |
| abstract_inverted_index.trained | 145 |
| abstract_inverted_index.vision. | 98 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Forrest. | 168 |
| abstract_inverted_index.computer | 97 |
| abstract_inverted_index.develops | 28 |
| abstract_inverted_index.embedded | 109 |
| abstract_inverted_index.holistic | 75 |
| abstract_inverted_index.profiles | 132 |
| abstract_inverted_index.proposed | 58, 118 |
| abstract_inverted_index."imagify" | 129 |
| abstract_inverted_index.Different | 1 |
| abstract_inverted_index.abundance | 113 |
| abstract_inverted_index.automated | 92 |
| abstract_inverted_index.depending | 4 |
| abstract_inverted_index.different | 88 |
| abstract_inverted_index.encompass | 9 |
| abstract_inverted_index.molecular | 66, 76, 112 |
| abstract_inverted_index.molecules | 18, 105 |
| abstract_inverted_index.neighbour | 108 |
| abstract_inverted_index.numerical | 44 |
| abstract_inverted_index.profiles, | 3 |
| abstract_inverted_index.scRNA-seq | 159 |
| abstract_inverted_index.thousands | 16 |
| abstract_inverted_index.accurately | 151 |
| abstract_inverted_index.biological | 21, 80, 89 |
| abstract_inverted_index.classifies | 152 |
| abstract_inverted_index.expression | 131 |
| abstract_inverted_index.individual | 134 |
| abstract_inverted_index.intensity. | 116 |
| abstract_inverted_index.one-to-one | 51 |
| abstract_inverted_index.phenotypes | 90 |
| abstract_inverted_index.represents | 102 |
| abstract_inverted_index.sequencing | 125 |
| abstract_inverted_index.transforms | 61 |
| abstract_inverted_index.underlying | 7 |
| abstract_inverted_index.(scRNA-seq) | 126 |
| abstract_inverted_index.classifiers | 160 |
| abstract_inverted_index.recognition | 94 |
| abstract_inverted_index.single-cell | 123, 148 |
| abstract_inverted_index.technology, | 8 |
| abstract_inverted_index.transformed | 100 |
| abstract_inverted_index.measurements | 10, 45, 67 |
| abstract_inverted_index.relationship | 52 |
| abstract_inverted_index.representing | 42, 111 |
| abstract_inverted_index.transforming | 39 |
| abstract_inverted_index.convolutional | 142 |
| abstract_inverted_index.corresponding | 55 |
| abstract_inverted_index.imagification | 59 |
| abstract_inverted_index.outperforming | 156 |
| abstract_inverted_index.2D-coordinates | 103 |
| abstract_inverted_index.classification | 86 |
| abstract_inverted_index.imagification" | 34 |
| abstract_inverted_index.representation | 77 |
| abstract_inverted_index.best-performing | 158 |
| abstract_inverted_index.transcriptomics | 149 |
| abstract_inverted_index.two-dimensional | 70 |
| abstract_inverted_index.high-dimensional | 63 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.09160232 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |