Omni-QALAS: Optimized Multiparametric Imaging for Simultaneous T1, T2 and Myelin Water Mapping Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.13118
Purpose: To improve the accuracy of multiparametric estimation, including myelin water fraction (MWF) quantification, and reduce scan time in 3D-QALAS by optimizing sequence parameters, using a self-supervised multilayer perceptron network. Methods: We jointly optimize flip angles, T2 preparation durations, and sequence gaps for T1 recovery using a self-supervised MLP trained to minimize a Cramer-Rao bound-based loss function, with explicit constraints on total scan time. The optimization targets white matter, gray matter, and myelin water tissues, and its performance was validated through simulation, phantom, and in vivo experiments. Results: Building on our previously proposed MWF-QALAS method for simultaneous MWF, T1, and T2 mapping, the optimized sequence reduces the number of readouts from six to five and achieves a scan time nearly one minute shorter, while also yielding higher T1 and T2 accuracy and improved MWF maps. This sequence enables simultaneous multiparametric quantification, including MWF, at 1 mm isotropic resolution within 3 minutes and 30 seconds. Conclusion: This study demonstrated that optimizing sequence parameters using a self-supervised MLP network improved T1, T2 and MWF estimation accuracy, while reducing scan time.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.13118
- https://arxiv.org/pdf/2510.13118
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415274596
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415274596Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.13118Digital Object Identifier
- Title
-
Omni-QALAS: Optimized Multiparametric Imaging for Simultaneous T1, T2 and Myelin Water MappingWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-15Full publication date if available
- Authors
-
Song Li, Unay Dorken Gallastegi, Shohei Fujita, Yuting Chen, Pengcheng Xu, Yangsean Choi, Borjan Gagoski, Huihui Ye, Huafeng Liu, Berkin Bilgic̦, Yohan JunList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.13118Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.13118Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.13118Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415274596 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.13118 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.13118 |
| ids.openalex | https://openalex.org/W4415274596 |
| fwci | 0.0 |
| type | preprint |
| title | Omni-QALAS: Optimized Multiparametric Imaging for Simultaneous T1, T2 and Myelin Water Mapping |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.5146999955177307 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10836 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.5138999819755554 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Metabolomics and Mass Spectrometry Studies |
| topics[2].id | https://openalex.org/T13702 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.4869999885559082 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.13118 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.13118 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.13118 |
| locations[1].id | doi:10.48550/arxiv.2510.13118 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.13118 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100701086 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9140-9973 |
| authorships[0].author.display_name | Song Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Shizhuo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5120033636 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Unay Dorken Gallastegi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gallastegi, Unay Dorken |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5051043193 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4276-6226 |
| authorships[2].author.display_name | Shohei Fujita |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fujita, Shohei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100436560 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0262-9721 |
| authorships[3].author.display_name | Yuting Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Yuting |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101666393 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3137-4801 |
| authorships[4].author.display_name | Pengcheng Xu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xu, Pengcheng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5033157744 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1674-7101 |
| authorships[5].author.display_name | Yangsean Choi |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Choi, Yangsean |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5021911579 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3777-2621 |
| authorships[6].author.display_name | Borjan Gagoski |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Gagoski, Borjan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5103031274 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7563-0352 |
| authorships[7].author.display_name | Huihui Ye |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ye, Huihui |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100725635 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9737-9437 |
| authorships[8].author.display_name | Huafeng Liu |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Liu, Huafeng |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5072823095 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9080-7865 |
| authorships[9].author.display_name | Berkin Bilgic̦ |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Bilgic, Berkin |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5017460004 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-4787-4760 |
| authorships[10].author.display_name | Yohan Jun |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Jun, Yohan |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.13118 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-17T00:00:00 |
| display_name | Omni-QALAS: Optimized Multiparametric Imaging for Simultaneous T1, T2 and Myelin Water Mapping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.5146999955177307 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.13118 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.13118 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.13118 |
| primary_location.id | pmh:oai:arXiv.org:2510.13118 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.13118 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.13118 |
| publication_date | 2025-10-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 144 |
| abstract_inverted_index.3 | 149 |
| abstract_inverted_index.a | 25, 46, 52, 116, 163 |
| abstract_inverted_index.30 | 152 |
| abstract_inverted_index.T1 | 43, 127 |
| abstract_inverted_index.T2 | 36, 100, 129, 169 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.We | 31 |
| abstract_inverted_index.at | 143 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.in | 18, 84 |
| abstract_inverted_index.mm | 145 |
| abstract_inverted_index.of | 5, 108 |
| abstract_inverted_index.on | 60, 89 |
| abstract_inverted_index.to | 50, 112 |
| abstract_inverted_index.MLP | 48, 165 |
| abstract_inverted_index.MWF | 133, 171 |
| abstract_inverted_index.T1, | 98, 168 |
| abstract_inverted_index.The | 64 |
| abstract_inverted_index.and | 14, 39, 71, 75, 83, 99, 114, 128, 131, 151, 170 |
| abstract_inverted_index.for | 42, 95 |
| abstract_inverted_index.its | 76 |
| abstract_inverted_index.one | 120 |
| abstract_inverted_index.our | 90 |
| abstract_inverted_index.six | 111 |
| abstract_inverted_index.the | 3, 102, 106 |
| abstract_inverted_index.was | 78 |
| abstract_inverted_index.MWF, | 97, 142 |
| abstract_inverted_index.This | 135, 155 |
| abstract_inverted_index.also | 124 |
| abstract_inverted_index.five | 113 |
| abstract_inverted_index.flip | 34 |
| abstract_inverted_index.from | 110 |
| abstract_inverted_index.gaps | 41 |
| abstract_inverted_index.gray | 69 |
| abstract_inverted_index.loss | 55 |
| abstract_inverted_index.scan | 16, 62, 117, 176 |
| abstract_inverted_index.that | 158 |
| abstract_inverted_index.time | 17, 118 |
| abstract_inverted_index.vivo | 85 |
| abstract_inverted_index.with | 57 |
| abstract_inverted_index.(MWF) | 12 |
| abstract_inverted_index.maps. | 134 |
| abstract_inverted_index.study | 156 |
| abstract_inverted_index.time. | 63, 177 |
| abstract_inverted_index.total | 61 |
| abstract_inverted_index.using | 24, 45, 162 |
| abstract_inverted_index.water | 10, 73 |
| abstract_inverted_index.while | 123, 174 |
| abstract_inverted_index.white | 67 |
| abstract_inverted_index.higher | 126 |
| abstract_inverted_index.method | 94 |
| abstract_inverted_index.minute | 121 |
| abstract_inverted_index.myelin | 9, 72 |
| abstract_inverted_index.nearly | 119 |
| abstract_inverted_index.number | 107 |
| abstract_inverted_index.reduce | 15 |
| abstract_inverted_index.within | 148 |
| abstract_inverted_index.angles, | 35 |
| abstract_inverted_index.enables | 137 |
| abstract_inverted_index.improve | 2 |
| abstract_inverted_index.jointly | 32 |
| abstract_inverted_index.matter, | 68, 70 |
| abstract_inverted_index.minutes | 150 |
| abstract_inverted_index.network | 166 |
| abstract_inverted_index.reduces | 105 |
| abstract_inverted_index.targets | 66 |
| abstract_inverted_index.through | 80 |
| abstract_inverted_index.trained | 49 |
| abstract_inverted_index.3D-QALAS | 19 |
| abstract_inverted_index.Building | 88 |
| abstract_inverted_index.Methods: | 30 |
| abstract_inverted_index.Purpose: | 0 |
| abstract_inverted_index.Results: | 87 |
| abstract_inverted_index.accuracy | 4, 130 |
| abstract_inverted_index.achieves | 115 |
| abstract_inverted_index.explicit | 58 |
| abstract_inverted_index.fraction | 11 |
| abstract_inverted_index.improved | 132, 167 |
| abstract_inverted_index.mapping, | 101 |
| abstract_inverted_index.minimize | 51 |
| abstract_inverted_index.network. | 29 |
| abstract_inverted_index.optimize | 33 |
| abstract_inverted_index.phantom, | 82 |
| abstract_inverted_index.proposed | 92 |
| abstract_inverted_index.readouts | 109 |
| abstract_inverted_index.recovery | 44 |
| abstract_inverted_index.reducing | 175 |
| abstract_inverted_index.seconds. | 153 |
| abstract_inverted_index.sequence | 22, 40, 104, 136, 160 |
| abstract_inverted_index.shorter, | 122 |
| abstract_inverted_index.tissues, | 74 |
| abstract_inverted_index.yielding | 125 |
| abstract_inverted_index.MWF-QALAS | 93 |
| abstract_inverted_index.accuracy, | 173 |
| abstract_inverted_index.function, | 56 |
| abstract_inverted_index.including | 8, 141 |
| abstract_inverted_index.isotropic | 146 |
| abstract_inverted_index.optimized | 103 |
| abstract_inverted_index.validated | 79 |
| abstract_inverted_index.Cramer-Rao | 53 |
| abstract_inverted_index.durations, | 38 |
| abstract_inverted_index.estimation | 172 |
| abstract_inverted_index.multilayer | 27 |
| abstract_inverted_index.optimizing | 21, 159 |
| abstract_inverted_index.parameters | 161 |
| abstract_inverted_index.perceptron | 28 |
| abstract_inverted_index.previously | 91 |
| abstract_inverted_index.resolution | 147 |
| abstract_inverted_index.Conclusion: | 154 |
| abstract_inverted_index.bound-based | 54 |
| abstract_inverted_index.constraints | 59 |
| abstract_inverted_index.estimation, | 7 |
| abstract_inverted_index.parameters, | 23 |
| abstract_inverted_index.performance | 77 |
| abstract_inverted_index.preparation | 37 |
| abstract_inverted_index.simulation, | 81 |
| abstract_inverted_index.demonstrated | 157 |
| abstract_inverted_index.experiments. | 86 |
| abstract_inverted_index.optimization | 65 |
| abstract_inverted_index.simultaneous | 96, 138 |
| abstract_inverted_index.multiparametric | 6, 139 |
| abstract_inverted_index.quantification, | 13, 140 |
| abstract_inverted_index.self-supervised | 26, 47, 164 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile |