On a question of Külshammer for representations of finite groups in reductive groups Article Swipe
Michael Bate
,
Benjamin Martin
,
Gerhard Röhrle
·
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1505.00377
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1505.00377
Let $G$ be a simple algebraic group of type $G_2$ over an algebraically closed field of characteristic $2$. We give an example of a finite group $Γ$ with Sylow $2$-subgroup $Γ_2$ and an infinite family of pairwise non-conjugate homomorphisms $ρ\colon Γ\rightarrow G$ whose restrictions to $Γ_2$ are all conjugate. This answers a question of Burkhard Külshammer from 1995. We also give an action of $Γ$ on a connected unipotent group $V$ such that the map of 1-cohomologies ${\rm H}^1(Γ,V)\rightarrow {\rm H}^1(Γ_p,V)$ induced by restriction of 1-cocycles has an infinite fibre.
Related Topics
Concepts
Unipotent
Algebraically closed field
Mathematics
Algebraic group
Homomorphism
Sylow theorems
Combinatorics
Reductive group
Conjugate
Complement (music)
Finite group
Group (periodic table)
Pure mathematics
Algebraic number
Physics
Group theory
Mathematical analysis
Gene
Complementation
Phenotype
Chemistry
Biochemistry
Quantum mechanics
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://orcid.org/0000-0002-6513-2405>,
- OA Status
- green
- Cited By
- 1
- References
- 11
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2950561177
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2950561177Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1505.00377Digital Object Identifier
- Title
-
On a question of Külshammer for representations of finite groups in reductive groupsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-05-02Full publication date if available
- Authors
-
Michael Bate, Benjamin Martin, Gerhard RöhrleList of authors in order
- Landing page
-
https://orcid.org/0000-0002-6513-2405>,Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1505.00377.pdfDirect OA link when available
- Concepts
-
Unipotent, Algebraically closed field, Mathematics, Algebraic group, Homomorphism, Sylow theorems, Combinatorics, Reductive group, Conjugate, Complement (music), Finite group, Group (periodic table), Pure mathematics, Algebraic number, Physics, Group theory, Mathematical analysis, Gene, Complementation, Phenotype, Chemistry, Biochemistry, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2015: 1Per-year citation counts (last 5 years)
- References (count)
-
11Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2950561177 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1505.00377 |
| ids.doi | https://doi.org/10.48550/arxiv.1505.00377 |
| ids.mag | 2950561177 |
| ids.openalex | https://openalex.org/W2950561177 |
| fwci | |
| type | preprint |
| title | On a question of Külshammer for representations of finite groups in reductive groups |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11680 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Advanced Algebra and Geometry |
| topics[1].id | https://openalex.org/T10061 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2608 |
| topics[1].subfield.display_name | Geometry and Topology |
| topics[1].display_name | Algebraic Geometry and Number Theory |
| topics[2].id | https://openalex.org/T10849 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9990000128746033 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2607 |
| topics[2].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[2].display_name | Finite Group Theory Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C205633959 |
| concepts[0].level | 2 |
| concepts[0].score | 0.748846173286438 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2494915 |
| concepts[0].display_name | Unipotent |
| concepts[1].id | https://openalex.org/C203701370 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7212813496589661 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1047547 |
| concepts[1].display_name | Algebraically closed field |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7198657989501953 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C187173678 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6349284648895264 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1695400 |
| concepts[3].display_name | Algebraic group |
| concepts[4].id | https://openalex.org/C4042151 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6135217547416687 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q215111 |
| concepts[4].display_name | Homomorphism |
| concepts[5].id | https://openalex.org/C124535231 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5949735045433044 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1057919 |
| concepts[5].display_name | Sylow theorems |
| concepts[6].id | https://openalex.org/C114614502 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5357908606529236 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[6].display_name | Combinatorics |
| concepts[7].id | https://openalex.org/C179415260 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5027198791503906 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1006450 |
| concepts[7].display_name | Reductive group |
| concepts[8].id | https://openalex.org/C197336794 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48083075881004333 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5161150 |
| concepts[8].display_name | Conjugate |
| concepts[9].id | https://openalex.org/C112313634 |
| concepts[9].level | 5 |
| concepts[9].score | 0.45168811082839966 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7886648 |
| concepts[9].display_name | Complement (music) |
| concepts[10].id | https://openalex.org/C2777404646 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4309820830821991 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1057968 |
| concepts[10].display_name | Finite group |
| concepts[11].id | https://openalex.org/C2781311116 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4264984130859375 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[11].display_name | Group (periodic table) |
| concepts[12].id | https://openalex.org/C202444582 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4088597893714905 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[12].display_name | Pure mathematics |
| concepts[13].id | https://openalex.org/C9376300 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3899089992046356 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q168817 |
| concepts[13].display_name | Algebraic number |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.22942426800727844 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C81651864 |
| concepts[15].level | 2 |
| concepts[15].score | 0.18941432237625122 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q874429 |
| concepts[15].display_name | Group theory |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07340225577354431 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C104317684 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[17].display_name | Gene |
| concepts[18].id | https://openalex.org/C188082640 |
| concepts[18].level | 4 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1780899 |
| concepts[18].display_name | Complementation |
| concepts[19].id | https://openalex.org/C127716648 |
| concepts[19].level | 3 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q104053 |
| concepts[19].display_name | Phenotype |
| concepts[20].id | https://openalex.org/C185592680 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[20].display_name | Chemistry |
| concepts[21].id | https://openalex.org/C55493867 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[21].display_name | Biochemistry |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/unipotent |
| keywords[0].score | 0.748846173286438 |
| keywords[0].display_name | Unipotent |
| keywords[1].id | https://openalex.org/keywords/algebraically-closed-field |
| keywords[1].score | 0.7212813496589661 |
| keywords[1].display_name | Algebraically closed field |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.7198657989501953 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/algebraic-group |
| keywords[3].score | 0.6349284648895264 |
| keywords[3].display_name | Algebraic group |
| keywords[4].id | https://openalex.org/keywords/homomorphism |
| keywords[4].score | 0.6135217547416687 |
| keywords[4].display_name | Homomorphism |
| keywords[5].id | https://openalex.org/keywords/sylow-theorems |
| keywords[5].score | 0.5949735045433044 |
| keywords[5].display_name | Sylow theorems |
| keywords[6].id | https://openalex.org/keywords/combinatorics |
| keywords[6].score | 0.5357908606529236 |
| keywords[6].display_name | Combinatorics |
| keywords[7].id | https://openalex.org/keywords/reductive-group |
| keywords[7].score | 0.5027198791503906 |
| keywords[7].display_name | Reductive group |
| keywords[8].id | https://openalex.org/keywords/conjugate |
| keywords[8].score | 0.48083075881004333 |
| keywords[8].display_name | Conjugate |
| keywords[9].id | https://openalex.org/keywords/complement |
| keywords[9].score | 0.45168811082839966 |
| keywords[9].display_name | Complement (music) |
| keywords[10].id | https://openalex.org/keywords/finite-group |
| keywords[10].score | 0.4309820830821991 |
| keywords[10].display_name | Finite group |
| keywords[11].id | https://openalex.org/keywords/group |
| keywords[11].score | 0.4264984130859375 |
| keywords[11].display_name | Group (periodic table) |
| keywords[12].id | https://openalex.org/keywords/pure-mathematics |
| keywords[12].score | 0.4088597893714905 |
| keywords[12].display_name | Pure mathematics |
| keywords[13].id | https://openalex.org/keywords/algebraic-number |
| keywords[13].score | 0.3899089992046356 |
| keywords[13].display_name | Algebraic number |
| keywords[14].id | https://openalex.org/keywords/physics |
| keywords[14].score | 0.22942426800727844 |
| keywords[14].display_name | Physics |
| keywords[15].id | https://openalex.org/keywords/group-theory |
| keywords[15].score | 0.18941432237625122 |
| keywords[15].display_name | Group theory |
| keywords[16].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[16].score | 0.07340225577354431 |
| keywords[16].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:eprints.whiterose.ac.uk:86346 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306400854 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | White Rose Research Online (University of Leeds, The University of Sheffield, University of York) |
| locations[0].source.host_organization | https://openalex.org/I2800616092 |
| locations[0].source.host_organization_name | White Rose University Consortium |
| locations[0].source.host_organization_lineage | https://openalex.org/I2800616092 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | PeerReviewed |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://orcid.org/0000-0002-6513-2405>, |
| locations[1].id | mag:2950561177 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/1505.00377.pdf |
| locations[2].id | doi:10.48550/arxiv.1505.00377 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1505.00377 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5111219671 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6513-2405 |
| authorships[0].author.display_name | Michael Bate |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michael Bate |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077907606 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6670-0857 |
| authorships[1].author.display_name | Benjamin Martin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Benjamin Martin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5055946073 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Gerhard Röhrle |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Gerhard Röhrle |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1505.00377.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On a question of Külshammer for representations of finite groups in reductive groups |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11680 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Advanced Algebra and Geometry |
| related_works | https://openalex.org/W2548126695, https://openalex.org/W2257803573, https://openalex.org/W1777216890, https://openalex.org/W2788859280, https://openalex.org/W2952627697, https://openalex.org/W2963622391, https://openalex.org/W3035483670, https://openalex.org/W2061755057, https://openalex.org/W2084615082, https://openalex.org/W2001640875, https://openalex.org/W2970395287, https://openalex.org/W2020430206, https://openalex.org/W1975970681, https://openalex.org/W2043974758, https://openalex.org/W2963599701, https://openalex.org/W2066834398, https://openalex.org/W2031806696, https://openalex.org/W2014175449, https://openalex.org/W1975846031, https://openalex.org/W1823339120 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2015 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | mag:2950561177 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/pdf/1505.00377.pdf |
| primary_location.id | pmh:oai:eprints.whiterose.ac.uk:86346 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306400854 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | White Rose Research Online (University of Leeds, The University of Sheffield, University of York) |
| primary_location.source.host_organization | https://openalex.org/I2800616092 |
| primary_location.source.host_organization_name | White Rose University Consortium |
| primary_location.source.host_organization_lineage | https://openalex.org/I2800616092 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | PeerReviewed |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://orcid.org/0000-0002-6513-2405>, |
| publication_date | 2015-05-02 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2963527727, https://openalex.org/W1677713212, https://openalex.org/W2091384925, https://openalex.org/W1978665997, https://openalex.org/W2087385474, https://openalex.org/W1983087629, https://openalex.org/W2049550828, https://openalex.org/W2038548542, https://openalex.org/W2103595800, https://openalex.org/W1521429823, https://openalex.org/W2578181793 |
| referenced_works_count | 11 |
| abstract_inverted_index.a | 3, 23, 51, 66 |
| abstract_inverted_index.G$ | 41 |
| abstract_inverted_index.We | 18, 58 |
| abstract_inverted_index.an | 11, 20, 32, 61, 87 |
| abstract_inverted_index.be | 2 |
| abstract_inverted_index.by | 82 |
| abstract_inverted_index.of | 7, 15, 22, 35, 53, 63, 75, 84 |
| abstract_inverted_index.on | 65 |
| abstract_inverted_index.to | 44 |
| abstract_inverted_index.$G$ | 1 |
| abstract_inverted_index.$V$ | 70 |
| abstract_inverted_index.Let | 0 |
| abstract_inverted_index.all | 47 |
| abstract_inverted_index.and | 31 |
| abstract_inverted_index.are | 46 |
| abstract_inverted_index.has | 86 |
| abstract_inverted_index.map | 74 |
| abstract_inverted_index.the | 73 |
| abstract_inverted_index.$2$. | 17 |
| abstract_inverted_index.$Γ$ | 26, 64 |
| abstract_inverted_index.This | 49 |
| abstract_inverted_index.also | 59 |
| abstract_inverted_index.from | 56 |
| abstract_inverted_index.give | 19, 60 |
| abstract_inverted_index.over | 10 |
| abstract_inverted_index.such | 71 |
| abstract_inverted_index.that | 72 |
| abstract_inverted_index.type | 8 |
| abstract_inverted_index.with | 27 |
| abstract_inverted_index.{\rm | 79 |
| abstract_inverted_index.$G_2$ | 9 |
| abstract_inverted_index.${\rm | 77 |
| abstract_inverted_index.1995. | 57 |
| abstract_inverted_index.Sylow | 28 |
| abstract_inverted_index.field | 14 |
| abstract_inverted_index.group | 6, 25, 69 |
| abstract_inverted_index.whose | 42 |
| abstract_inverted_index.$Γ_2$ | 30, 45 |
| abstract_inverted_index.action | 62 |
| abstract_inverted_index.closed | 13 |
| abstract_inverted_index.family | 34 |
| abstract_inverted_index.fibre. | 89 |
| abstract_inverted_index.finite | 24 |
| abstract_inverted_index.simple | 4 |
| abstract_inverted_index.answers | 50 |
| abstract_inverted_index.example | 21 |
| abstract_inverted_index.induced | 81 |
| abstract_inverted_index.Burkhard | 54 |
| abstract_inverted_index.infinite | 33, 88 |
| abstract_inverted_index.pairwise | 36 |
| abstract_inverted_index.question | 52 |
| abstract_inverted_index.$ρ\colon | 39 |
| abstract_inverted_index.algebraic | 5 |
| abstract_inverted_index.connected | 67 |
| abstract_inverted_index.unipotent | 68 |
| abstract_inverted_index.1-cocycles | 85 |
| abstract_inverted_index.conjugate. | 48 |
| abstract_inverted_index.Külshammer | 55 |
| abstract_inverted_index.restriction | 83 |
| abstract_inverted_index.$2$-subgroup | 29 |
| abstract_inverted_index.restrictions | 43 |
| abstract_inverted_index.H}^1(Γ_p,V)$ | 80 |
| abstract_inverted_index.algebraically | 12 |
| abstract_inverted_index.homomorphisms | 38 |
| abstract_inverted_index.non-conjugate | 37 |
| abstract_inverted_index.Γ\rightarrow | 40 |
| abstract_inverted_index.1-cohomologies | 76 |
| abstract_inverted_index.characteristic | 16 |
| abstract_inverted_index.H}^1(Γ,V)\rightarrow | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |