On a theorem of Mattila in the finite p-adic setting Article Swipe
Boqing Xue
,
Thang Pham
,
Quang-Hung Le
,
Quang Vinh Tin Le
,
Nguyen Duc Phuong
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4153/s0008439525100866
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.4153/s0008439525100866
Let $A\ \mathrm{and}\ B$ be subsets of $(\mathbb {Z}/p^r\mathbb {Z})^2$ . In this note, we provide conditions on the densities of A and B such that $|gA-B|\gg p^{2r}$ for a positive proportion of $g\in SO_2(\mathbb {Z}/p^r\mathbb {Z})$ . The conditions are sharp up to constant factors in the unbalanced case, and the proof makes use of tools from discrete Fourier analysis and results in restriction/extension theory.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4153/s0008439525100866
- https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8C0609C64D2D58E87C9B30AB86DEA614/S0008439525100866a.pdf/div-class-title-on-a-theorem-of-mattila-in-the-finite-p-adic-setting-div.pdf
- OA Status
- hybrid
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412386377
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412386377Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4153/s0008439525100866Digital Object Identifier
- Title
-
On a theorem of Mattila in the finite p-adic settingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-14Full publication date if available
- Authors
-
Boqing Xue, Thang Pham, Quang-Hung Le, Quang Vinh Tin Le, Nguyen Duc PhuongList of authors in order
- Landing page
-
https://doi.org/10.4153/s0008439525100866Publisher landing page
- PDF URL
-
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8C0609C64D2D58E87C9B30AB86DEA614/S0008439525100866a.pdf/div-class-title-on-a-theorem-of-mattila-in-the-finite-p-adic-setting-div.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8C0609C64D2D58E87C9B30AB86DEA614/S0008439525100866a.pdf/div-class-title-on-a-theorem-of-mattila-in-the-finite-p-adic-setting-div.pdfDirect OA link when available
- Concepts
-
Mathematics, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412386377 |
|---|---|
| doi | https://doi.org/10.4153/s0008439525100866 |
| ids.doi | https://doi.org/10.4153/s0008439525100866 |
| ids.openalex | https://openalex.org/W4412386377 |
| fwci | 0.0 |
| type | article |
| title | On a theorem of Mattila in the finite p-adic setting |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 15 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T13234 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | advanced mathematical theories |
| topics[1].id | https://openalex.org/T12812 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9747999906539917 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Meromorphic and Entire Functions |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8281483054161072 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C202444582 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3347223997116089 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[1].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.8281483054161072 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/pure-mathematics |
| keywords[1].score | 0.3347223997116089 |
| keywords[1].display_name | Pure mathematics |
| language | en |
| locations[0].id | doi:10.4153/s0008439525100866 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210217933 |
| locations[0].source.issn | 0008-4395, 1496-4287 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0008-4395 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Canadian Mathematical Bulletin |
| locations[0].source.host_organization | https://openalex.org/P4310311721 |
| locations[0].source.host_organization_name | Cambridge University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| locations[0].source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8C0609C64D2D58E87C9B30AB86DEA614/S0008439525100866a.pdf/div-class-title-on-a-theorem-of-mattila-in-the-finite-p-adic-setting-div.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Canadian Mathematical Bulletin |
| locations[0].landing_page_url | https://doi.org/10.4153/s0008439525100866 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5003919913 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4201-3817 |
| authorships[0].author.display_name | Boqing Xue |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I30809798 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Mathematical Sciences, ShanghaiTech University , Shanghai 201210, China e-mail: |
| authorships[0].institutions[0].id | https://openalex.org/I30809798 |
| authorships[0].institutions[0].ror | https://ror.org/030bhh786 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I30809798 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | ShanghaiTech University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Boqing Xue |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Mathematical Sciences, ShanghaiTech University , Shanghai 201210, China e-mail: |
| authorships[1].author.id | https://openalex.org/A5001828232 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7600-7450 |
| authorships[1].author.display_name | Thang Pham |
| authorships[1].countries | VN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I177233841 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Science, Vietnam National University , Hanoi 100000, Vietnam |
| authorships[1].institutions[0].id | https://openalex.org/I177233841 |
| authorships[1].institutions[0].ror | https://ror.org/02jmfj006 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I177233841 |
| authorships[1].institutions[0].country_code | VN |
| authorships[1].institutions[0].display_name | Vietnam National University, Hanoi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Thang Pham |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | University of Science, Vietnam National University , Hanoi 100000, Vietnam |
| authorships[2].author.id | https://openalex.org/A5112307627 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4727-6859 |
| authorships[2].author.display_name | Quang-Hung Le |
| authorships[2].countries | VN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I94518387 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Mathematics and Informatics, Hanoi University of Science and Technology , Hanoi 100000, Vietnam e-mail: |
| authorships[2].institutions[0].id | https://openalex.org/I94518387 |
| authorships[2].institutions[0].ror | https://ror.org/04nyv3z04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I94518387 |
| authorships[2].institutions[0].country_code | VN |
| authorships[2].institutions[0].display_name | Hanoi University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Quang-Hung Le |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Mathematics and Informatics, Hanoi University of Science and Technology , Hanoi 100000, Vietnam e-mail: |
| authorships[3].author.id | https://openalex.org/A5116235744 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9490-4208 |
| authorships[3].author.display_name | Quang Vinh Tin Le |
| authorships[3].countries | VN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210148490 |
| authorships[3].affiliations[0].raw_affiliation_string | Vietnam Institute of Educational Sciences , Hanoi 100000, Vietnam e-mail: |
| authorships[3].institutions[0].id | https://openalex.org/I4210148490 |
| authorships[3].institutions[0].ror | https://ror.org/044nmzj55 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210148490 |
| authorships[3].institutions[0].country_code | VN |
| authorships[3].institutions[0].display_name | The Vietnam National Institute of Educational Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Quang-Ham Le |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Vietnam Institute of Educational Sciences , Hanoi 100000, Vietnam e-mail: |
| authorships[4].author.id | https://openalex.org/A5111638397 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3779-197X |
| authorships[4].author.display_name | Nguyen Duc Phuong |
| authorships[4].affiliations[0].raw_affiliation_string | People's Security Academy, Hanoi 100000, Vietnam e-mail: |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Nguyen D. Phuong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | People's Security Academy, Hanoi 100000, Vietnam e-mail: |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8C0609C64D2D58E87C9B30AB86DEA614/S0008439525100866a.pdf/div-class-title-on-a-theorem-of-mattila-in-the-finite-p-adic-setting-div.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On a theorem of Mattila in the finite p-adic setting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13234 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | advanced mathematical theories |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2962838298, https://openalex.org/W2600246793 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4153/s0008439525100866 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210217933 |
| best_oa_location.source.issn | 0008-4395, 1496-4287 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0008-4395 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Canadian Mathematical Bulletin |
| best_oa_location.source.host_organization | https://openalex.org/P4310311721 |
| best_oa_location.source.host_organization_name | Cambridge University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| best_oa_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8C0609C64D2D58E87C9B30AB86DEA614/S0008439525100866a.pdf/div-class-title-on-a-theorem-of-mattila-in-the-finite-p-adic-setting-div.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Canadian Mathematical Bulletin |
| best_oa_location.landing_page_url | https://doi.org/10.4153/s0008439525100866 |
| primary_location.id | doi:10.4153/s0008439525100866 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210217933 |
| primary_location.source.issn | 0008-4395, 1496-4287 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0008-4395 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Canadian Mathematical Bulletin |
| primary_location.source.host_organization | https://openalex.org/P4310311721 |
| primary_location.source.host_organization_name | Cambridge University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| primary_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8C0609C64D2D58E87C9B30AB86DEA614/S0008439525100866a.pdf/div-class-title-on-a-theorem-of-mattila-in-the-finite-p-adic-setting-div.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Canadian Mathematical Bulletin |
| primary_location.landing_page_url | https://doi.org/10.4153/s0008439525100866 |
| publication_date | 2025-07-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.. | 11, 38 |
| abstract_inverted_index.A | 22 |
| abstract_inverted_index.B | 24 |
| abstract_inverted_index.a | 30 |
| abstract_inverted_index.B$ | 4 |
| abstract_inverted_index.In | 12 |
| abstract_inverted_index.be | 5 |
| abstract_inverted_index.in | 47, 64 |
| abstract_inverted_index.of | 7, 21, 33, 56 |
| abstract_inverted_index.on | 18 |
| abstract_inverted_index.to | 44 |
| abstract_inverted_index.up | 43 |
| abstract_inverted_index.we | 15 |
| abstract_inverted_index.$A\ | 2 |
| abstract_inverted_index.Let | 1 |
| abstract_inverted_index.The | 39 |
| abstract_inverted_index.and | 23, 51, 62 |
| abstract_inverted_index.are | 41 |
| abstract_inverted_index.for | 29 |
| abstract_inverted_index.the | 19, 48, 52 |
| abstract_inverted_index.use | 55 |
| abstract_inverted_index.from | 58 |
| abstract_inverted_index.such | 25 |
| abstract_inverted_index.that | 26 |
| abstract_inverted_index.this | 13 |
| abstract_inverted_index.$g\in | 34 |
| abstract_inverted_index.case, | 50 |
| abstract_inverted_index.makes | 54 |
| abstract_inverted_index.note, | 14 |
| abstract_inverted_index.proof | 53 |
| abstract_inverted_index.sharp | 42 |
| abstract_inverted_index.tools | 57 |
| abstract_inverted_index.{Z})$ | 37 |
| abstract_inverted_index.Fourier | 60 |
| abstract_inverted_index.factors | 46 |
| abstract_inverted_index.p^{2r}$ | 28 |
| abstract_inverted_index.provide | 16 |
| abstract_inverted_index.results | 63 |
| abstract_inverted_index.subsets | 6 |
| abstract_inverted_index.theory. | 66 |
| abstract_inverted_index.{Z})^2$ | 10 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analysis | 61 |
| abstract_inverted_index.constant | 45 |
| abstract_inverted_index.discrete | 59 |
| abstract_inverted_index.positive | 31 |
| abstract_inverted_index.$(\mathbb | 8 |
| abstract_inverted_index.densities | 20 |
| abstract_inverted_index.$|gA-B|\gg | 27 |
| abstract_inverted_index.conditions | 17, 40 |
| abstract_inverted_index.proportion | 32 |
| abstract_inverted_index.unbalanced | 49 |
| abstract_inverted_index.SO_2(\mathbb | 35 |
| abstract_inverted_index.\mathrm{and}\ | 3 |
| abstract_inverted_index.{Z}/p^r\mathbb | 9, 36 |
| abstract_inverted_index.restriction/extension | 65 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5001828232 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I177233841 |
| citation_normalized_percentile.value | 0.32318501 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |