ON ADDITIVE REPRESENTATION FUNCTIONS Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1017/s0004972717000302
For any finite abelian group $G$ with $|G|=m$ , $A\subseteq G$ and $g\in G$ , let $R_{A}(g)$ be the number of solutions of the equation $g=a+b$ , $a,b\in A$ . Recently, Sándor and Yang [‘A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture’, Preprint, 2016, arXiv:1612.08722v1 ] proved that, if $m\geq 36$ and $R_{A}(n)\geq 1$ for all $n\in \mathbb{Z}_{m}$ , then there exists $n\in \mathbb{Z}_{m}$ such that $R_{A}(n)\geq 6$ . In this paper, for any finite abelian group $G$ with $|G|=m$ and $A\subseteq G$ , we prove that (a) if the number of $g\in G$ with $R_{A}(g)=0$ does not exceed $\frac{7}{32}m-\frac{1}{2}\sqrt{10m}-1$ , then there exists $g\in G$ such that $R_{A}(g)\geq 6$ ; (b) if $1\leq R_{A}(g)\leq 6$ for all $g\in G$ , then the number of $g\in G$ with $R_{A}(g)=6$ is more than $\frac{7}{32}m-\frac{1}{2}\sqrt{10m}-1$ .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1017/s0004972717000302
- https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6789C7E8157020E146D5211974F7E8DC/S0004972717000302a.pdf/div-class-title-on-additive-representation-functions-div.pdf
- OA Status
- diamond
- Cited By
- 1
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2964200455
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2964200455Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1017/s0004972717000302Digital Object Identifier
- Title
-
ON ADDITIVE REPRESENTATION FUNCTIONSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-05-02Full publication date if available
- Authors
-
YA-LI LI, Yong-Gao ChenList of authors in order
- Landing page
-
https://doi.org/10.1017/s0004972717000302Publisher landing page
- PDF URL
-
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6789C7E8157020E146D5211974F7E8DC/S0004972717000302a.pdf/div-class-title-on-additive-representation-functions-div.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6789C7E8157020E146D5211974F7E8DC/S0004972717000302a.pdf/div-class-title-on-additive-representation-functions-div.pdfDirect OA link when available
- Concepts
-
Abelian group, Mathematics, Combinatorics, ConjectureTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2018: 1Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2964200455 |
|---|---|
| doi | https://doi.org/10.1017/s0004972717000302 |
| ids.doi | https://doi.org/10.1017/s0004972717000302 |
| ids.mag | 2964200455 |
| ids.openalex | https://openalex.org/W2964200455 |
| fwci | 0.5957191 |
| type | article |
| title | ON ADDITIVE REPRESENTATION FUNCTIONS |
| biblio.issue | 3 |
| biblio.volume | 96 |
| biblio.last_page | 388 |
| biblio.first_page | 380 |
| topics[0].id | https://openalex.org/T11329 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2607 |
| topics[0].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[0].display_name | Limits and Structures in Graph Theory |
| topics[1].id | https://openalex.org/T11476 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2608 |
| topics[1].subfield.display_name | Geometry and Topology |
| topics[1].display_name | Graph theory and applications |
| topics[2].id | https://openalex.org/T10374 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9925000071525574 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Advanced Graph Theory Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C136170076 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7778764963150024 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q181296 |
| concepts[0].display_name | Abelian group |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7768725156784058 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C114614502 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7321001887321472 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[2].display_name | Combinatorics |
| concepts[3].id | https://openalex.org/C2780990831 |
| concepts[3].level | 2 |
| concepts[3].score | 0.626716673374176 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q319141 |
| concepts[3].display_name | Conjecture |
| keywords[0].id | https://openalex.org/keywords/abelian-group |
| keywords[0].score | 0.7778764963150024 |
| keywords[0].display_name | Abelian group |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.7768725156784058 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/combinatorics |
| keywords[2].score | 0.7321001887321472 |
| keywords[2].display_name | Combinatorics |
| keywords[3].id | https://openalex.org/keywords/conjecture |
| keywords[3].score | 0.626716673374176 |
| keywords[3].display_name | Conjecture |
| language | en |
| locations[0].id | doi:10.1017/s0004972717000302 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S141318850 |
| locations[0].source.issn | 0004-9727, 1755-1633 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0004-9727 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Bulletin of the Australian Mathematical Society |
| locations[0].source.host_organization | https://openalex.org/P4310311721 |
| locations[0].source.host_organization_name | Cambridge University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| locations[0].source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| locations[0].license | |
| locations[0].pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6789C7E8157020E146D5211974F7E8DC/S0004972717000302a.pdf/div-class-title-on-additive-representation-functions-div.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bulletin of the Australian Mathematical Society |
| locations[0].landing_page_url | https://doi.org/10.1017/s0004972717000302 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5112457684 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | YA-LI LI |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I152031979 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China email |
| authorships[0].institutions[0].id | https://openalex.org/I152031979 |
| authorships[0].institutions[0].ror | https://ror.org/036trcv74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I152031979 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | YA-LI LI |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China email |
| authorships[1].author.id | https://openalex.org/A5071548410 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8775-431X |
| authorships[1].author.display_name | Yong-Gao Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I152031979 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China email |
| authorships[1].institutions[0].id | https://openalex.org/I152031979 |
| authorships[1].institutions[0].ror | https://ror.org/036trcv74 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I152031979 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing Normal University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | YONG-GAO CHEN |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China email |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6789C7E8157020E146D5211974F7E8DC/S0004972717000302a.pdf/div-class-title-on-additive-representation-functions-div.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ON ADDITIVE REPRESENTATION FUNCTIONS |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11329 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2607 |
| primary_topic.subfield.display_name | Discrete Mathematics and Combinatorics |
| primary_topic.display_name | Limits and Structures in Graph Theory |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2962838298, https://openalex.org/W2600246793 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2018 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1017/s0004972717000302 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S141318850 |
| best_oa_location.source.issn | 0004-9727, 1755-1633 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0004-9727 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Bulletin of the Australian Mathematical Society |
| best_oa_location.source.host_organization | https://openalex.org/P4310311721 |
| best_oa_location.source.host_organization_name | Cambridge University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| best_oa_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6789C7E8157020E146D5211974F7E8DC/S0004972717000302a.pdf/div-class-title-on-additive-representation-functions-div.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bulletin of the Australian Mathematical Society |
| best_oa_location.landing_page_url | https://doi.org/10.1017/s0004972717000302 |
| primary_location.id | doi:10.1017/s0004972717000302 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S141318850 |
| primary_location.source.issn | 0004-9727, 1755-1633 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0004-9727 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Bulletin of the Australian Mathematical Society |
| primary_location.source.host_organization | https://openalex.org/P4310311721 |
| primary_location.source.host_organization_name | Cambridge University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| primary_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| primary_location.license | |
| primary_location.pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/6789C7E8157020E146D5211974F7E8DC/S0004972717000302a.pdf/div-class-title-on-additive-representation-functions-div.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bulletin of the Australian Mathematical Society |
| primary_location.landing_page_url | https://doi.org/10.1017/s0004972717000302 |
| publication_date | 2017-05-02 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W1034306462, https://openalex.org/W2070180693, https://openalex.org/W2075124669, https://openalex.org/W1574691718, https://openalex.org/W2069543057, https://openalex.org/W1897223594, https://openalex.org/W2033420558, https://openalex.org/W2040380583, https://openalex.org/W2321801280, https://openalex.org/W1968319543, https://openalex.org/W2009715442, https://openalex.org/W2279714906, https://openalex.org/W1964668403, https://openalex.org/W2083666582, https://openalex.org/W3101491282 |
| referenced_works_count | 15 |
| abstract_inverted_index., | 8, 14, 26, 61, 86, 103, 123 |
| abstract_inverted_index.. | 29, 71, 136 |
| abstract_inverted_index.; | 113 |
| abstract_inverted_index.] | 48 |
| abstract_inverted_index.1$ | 56 |
| abstract_inverted_index.6$ | 70, 112, 118 |
| abstract_inverted_index.A$ | 28 |
| abstract_inverted_index.G$ | 10, 13, 85, 96, 108, 122, 129 |
| abstract_inverted_index.In | 72 |
| abstract_inverted_index.be | 17 |
| abstract_inverted_index.if | 51, 91, 115 |
| abstract_inverted_index.is | 132 |
| abstract_inverted_index.of | 20, 22, 37, 94, 127 |
| abstract_inverted_index.to | 41 |
| abstract_inverted_index.we | 87 |
| abstract_inverted_index.$G$ | 5, 80 |
| abstract_inverted_index.(a) | 90 |
| abstract_inverted_index.(b) | 114 |
| abstract_inverted_index.36$ | 53 |
| abstract_inverted_index.For | 0 |
| abstract_inverted_index.all | 58, 120 |
| abstract_inverted_index.and | 11, 32, 54, 83 |
| abstract_inverted_index.any | 1, 76 |
| abstract_inverted_index.for | 57, 75, 119 |
| abstract_inverted_index.let | 15 |
| abstract_inverted_index.not | 100 |
| abstract_inverted_index.the | 18, 23, 42, 92, 125 |
| abstract_inverted_index.Yang | 33 |
| abstract_inverted_index.does | 99 |
| abstract_inverted_index.more | 133 |
| abstract_inverted_index.such | 67, 109 |
| abstract_inverted_index.than | 134 |
| abstract_inverted_index.that | 68, 89, 110 |
| abstract_inverted_index.then | 62, 104, 124 |
| abstract_inverted_index.this | 73 |
| abstract_inverted_index.with | 6, 81, 97, 130 |
| abstract_inverted_index.$g\in | 12, 95, 107, 121, 128 |
| abstract_inverted_index.$n\in | 59, 65 |
| abstract_inverted_index.2016, | 46 |
| abstract_inverted_index.[‘A | 34 |
| abstract_inverted_index.bound | 36 |
| abstract_inverted_index.group | 4, 79 |
| abstract_inverted_index.lower | 35 |
| abstract_inverted_index.prove | 88 |
| abstract_inverted_index.that, | 50 |
| abstract_inverted_index.there | 63, 105 |
| abstract_inverted_index.$1\leq | 116 |
| abstract_inverted_index.$m\geq | 52 |
| abstract_inverted_index.exceed | 101 |
| abstract_inverted_index.exists | 64, 106 |
| abstract_inverted_index.finite | 2, 77 |
| abstract_inverted_index.number | 19, 39, 93, 126 |
| abstract_inverted_index.paper, | 74 |
| abstract_inverted_index.proved | 49 |
| abstract_inverted_index.$a,b\in | 27 |
| abstract_inverted_index.$g=a+b$ | 25 |
| abstract_inverted_index.$|G|=m$ | 7, 82 |
| abstract_inverted_index.Sándor | 31 |
| abstract_inverted_index.abelian | 3, 78 |
| abstract_inverted_index.related | 40 |
| abstract_inverted_index.equation | 24 |
| abstract_inverted_index.Preprint, | 45 |
| abstract_inverted_index.Recently, | 30 |
| abstract_inverted_index.Ruzsa’s | 38 |
| abstract_inverted_index.solutions | 21 |
| abstract_inverted_index.$R_{A}(g)$ | 16 |
| abstract_inverted_index.$A\subseteq | 9, 84 |
| abstract_inverted_index.$R_{A}(g)=0$ | 98 |
| abstract_inverted_index.$R_{A}(g)=6$ | 131 |
| abstract_inverted_index.R_{A}(g)\leq | 117 |
| abstract_inverted_index.$R_{A}(g)\geq | 111 |
| abstract_inverted_index.$R_{A}(n)\geq | 55, 69 |
| abstract_inverted_index.conjecture’, | 44 |
| abstract_inverted_index.Erdős–Turán | 43 |
| abstract_inverted_index.\mathbb{Z}_{m}$ | 60, 66 |
| abstract_inverted_index.arXiv:1612.08722v1 | 47 |
| abstract_inverted_index.$\frac{7}{32}m-\frac{1}{2}\sqrt{10m}-1$ | 102, 135 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5071548410 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I152031979 |
| citation_normalized_percentile.value | 0.6888412 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |