On-device Computation of Single-lead ECG Parameters for Real-time Remote Cardiac Health Assessment: A Real-world Validation Study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.17499
Accurate, continuous out-of-hospital electrocardiogram (ECG) parameter measurement is vital for real-time cardiac health monitoring and telemedicine. On-device computation of single-lead ECG parameters enables timely assessment without reliance on centralized data processing, advancing personalized, ubiquitous cardiac care-yet comprehensive validation across heterogeneous real-world populations remains limited. This study validated the on-device algorithm FeatureDB (https://github.com/PKUDigitalHealth/FeatureDB) using two datasets: HeartVoice-ECG-lite (369 participants with single-lead ECGs annotated by two physicians) and PTB-XL/PTB-XL+ (21,354 patients with 12-lead ECGs and physicians' diagnostic annotations). FeatureDB computed PR, QT, and QTc intervals, with accuracy evaluated against physician annotations via mean absolute error (MAE), correlation analysis, and Bland-Altman analysis. Diagnostic performance for first-degree atrioventricular block (AVBI, PR-based) and long QT syndrome (LQT, QTc-based) was benchmarked against commercial 12-lead systems (12SL, Uni-G) and open-source algorithm Deli, using AUC, accuracy, sensitivity, and specificity. Results showed high concordance with expert annotations (Pearson correlations: 0.836-0.960), MAEs matching inter-observer variability, and minimal bias. AVBI AUC reached 0.787 (12SL: 0.859; Uni-G: 0.812; Deli: 0.501); LQT AUC was 0.684 (12SL: 0.716; Uni-G: 0.605; Deli: 0.569)-comparable to commercial tools and superior to open-source alternatives. FeatureDB delivers physician-level parameter accuracy and commercial-grade abnormality detection via single-lead devices, supporting scalable telemedicine, decentralized cardiac screening, and continuous monitoring in community and outpatient settings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.17499
- https://arxiv.org/pdf/2502.17499
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415906761
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415906761Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.17499Digital Object Identifier
- Title
-
On-device Computation of Single-lead ECG Parameters for Real-time Remote Cardiac Health Assessment: A Real-world Validation StudyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-21Full publication date if available
- Authors
-
Sumei Fan, Deyun Zhang, Yue Wang, Shijia Geng, Kun Lu, M Sang, Weixiang Xu, Hua Wang, Qinghao Zhao, Chuandong Cheng, Wang Peng, Shenda HongList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.17499Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.17499Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.17499Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415906761 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.17499 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.17499 |
| ids.openalex | https://openalex.org/W4415906761 |
| fwci | 0.0 |
| type | preprint |
| title | On-device Computation of Single-lead ECG Parameters for Real-time Remote Cardiac Health Assessment: A Real-world Validation Study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.17499 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.17499 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.17499 |
| locations[1].id | doi:10.48550/arxiv.2502.17499 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.17499 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5018141595 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7095-1299 |
| authorships[0].author.display_name | Sumei Fan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fan, Sumei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5027078109 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4041-3083 |
| authorships[1].author.display_name | Deyun Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Deyun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5065841119 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2362-3345 |
| authorships[2].author.display_name | Yue Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Yue |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5080631497 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9628-8808 |
| authorships[3].author.display_name | Shijia Geng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Geng, Shijia |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5044463202 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8947-4015 |
| authorships[4].author.display_name | Kun Lu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lu, Kun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5053187224 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | M Sang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sang, Meng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5102211516 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Weixiang Xu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xu, Weilun |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100403970 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8490-2874 |
| authorships[7].author.display_name | Hua Wang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Wang, Haixue |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5101081961 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4274-3905 |
| authorships[8].author.display_name | Qinghao Zhao |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zhao, Qinghao |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100305580 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Chuandong Cheng |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Cheng, Chuandong |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5100651200 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-4053-2004 |
| authorships[10].author.display_name | Wang Peng |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Wang, Peng |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5080648149 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-7521-5127 |
| authorships[11].author.display_name | Shenda Hong |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Hong, Shenda |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.17499 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On-device Computation of Single-lead ECG Parameters for Real-time Remote Cardiac Health Assessment: A Real-world Validation Study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.17499 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.17499 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.17499 |
| primary_location.id | pmh:oai:arXiv.org:2502.17499 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.17499 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.17499 |
| publication_date | 2025-02-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.QT | 109 |
| abstract_inverted_index.by | 62 |
| abstract_inverted_index.in | 197 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 18 |
| abstract_inverted_index.on | 27 |
| abstract_inverted_index.to | 168, 173 |
| abstract_inverted_index.AUC | 149, 159 |
| abstract_inverted_index.ECG | 20 |
| abstract_inverted_index.LQT | 158 |
| abstract_inverted_index.PR, | 78 |
| abstract_inverted_index.QT, | 79 |
| abstract_inverted_index.QTc | 81 |
| abstract_inverted_index.and | 14, 65, 72, 80, 96, 107, 121, 129, 145, 171, 181, 194, 199 |
| abstract_inverted_index.for | 9, 101 |
| abstract_inverted_index.the | 47 |
| abstract_inverted_index.two | 53, 63 |
| abstract_inverted_index.via | 89, 185 |
| abstract_inverted_index.was | 113, 160 |
| abstract_inverted_index.(369 | 56 |
| abstract_inverted_index.AUC, | 126 |
| abstract_inverted_index.AVBI | 148 |
| abstract_inverted_index.ECGs | 60, 71 |
| abstract_inverted_index.MAEs | 141 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.data | 29 |
| abstract_inverted_index.high | 133 |
| abstract_inverted_index.long | 108 |
| abstract_inverted_index.mean | 90 |
| abstract_inverted_index.with | 58, 69, 83, 135 |
| abstract_inverted_index.(ECG) | 4 |
| abstract_inverted_index.(LQT, | 111 |
| abstract_inverted_index.0.684 | 161 |
| abstract_inverted_index.0.787 | 151 |
| abstract_inverted_index.Deli, | 124 |
| abstract_inverted_index.Deli: | 156, 166 |
| abstract_inverted_index.bias. | 147 |
| abstract_inverted_index.block | 104 |
| abstract_inverted_index.error | 92 |
| abstract_inverted_index.study | 45 |
| abstract_inverted_index.tools | 170 |
| abstract_inverted_index.using | 52, 125 |
| abstract_inverted_index.vital | 8 |
| abstract_inverted_index.(12SL, | 119 |
| abstract_inverted_index.(12SL: | 152, 162 |
| abstract_inverted_index.(AVBI, | 105 |
| abstract_inverted_index.(MAE), | 93 |
| abstract_inverted_index.0.605; | 165 |
| abstract_inverted_index.0.716; | 163 |
| abstract_inverted_index.0.812; | 155 |
| abstract_inverted_index.0.859; | 153 |
| abstract_inverted_index.Uni-G) | 120 |
| abstract_inverted_index.Uni-G: | 154, 164 |
| abstract_inverted_index.across | 38 |
| abstract_inverted_index.expert | 136 |
| abstract_inverted_index.health | 12 |
| abstract_inverted_index.showed | 132 |
| abstract_inverted_index.timely | 23 |
| abstract_inverted_index.(21,354 | 67 |
| abstract_inverted_index.0.501); | 157 |
| abstract_inverted_index.12-lead | 70, 117 |
| abstract_inverted_index.Results | 131 |
| abstract_inverted_index.against | 86, 115 |
| abstract_inverted_index.cardiac | 11, 34, 192 |
| abstract_inverted_index.enables | 22 |
| abstract_inverted_index.minimal | 146 |
| abstract_inverted_index.reached | 150 |
| abstract_inverted_index.remains | 42 |
| abstract_inverted_index.systems | 118 |
| abstract_inverted_index.without | 25 |
| abstract_inverted_index.(Pearson | 138 |
| abstract_inverted_index.absolute | 91 |
| abstract_inverted_index.accuracy | 84, 180 |
| abstract_inverted_index.care-yet | 35 |
| abstract_inverted_index.computed | 77 |
| abstract_inverted_index.delivers | 177 |
| abstract_inverted_index.devices, | 187 |
| abstract_inverted_index.limited. | 43 |
| abstract_inverted_index.matching | 142 |
| abstract_inverted_index.patients | 68 |
| abstract_inverted_index.reliance | 26 |
| abstract_inverted_index.scalable | 189 |
| abstract_inverted_index.superior | 172 |
| abstract_inverted_index.syndrome | 110 |
| abstract_inverted_index.Accurate, | 0 |
| abstract_inverted_index.FeatureDB | 50, 76, 176 |
| abstract_inverted_index.On-device | 16 |
| abstract_inverted_index.PR-based) | 106 |
| abstract_inverted_index.accuracy, | 127 |
| abstract_inverted_index.advancing | 31 |
| abstract_inverted_index.algorithm | 49, 123 |
| abstract_inverted_index.analysis, | 95 |
| abstract_inverted_index.analysis. | 98 |
| abstract_inverted_index.annotated | 61 |
| abstract_inverted_index.community | 198 |
| abstract_inverted_index.datasets: | 54 |
| abstract_inverted_index.detection | 184 |
| abstract_inverted_index.evaluated | 85 |
| abstract_inverted_index.on-device | 48 |
| abstract_inverted_index.parameter | 5, 179 |
| abstract_inverted_index.physician | 87 |
| abstract_inverted_index.real-time | 10 |
| abstract_inverted_index.settings. | 201 |
| abstract_inverted_index.validated | 46 |
| abstract_inverted_index.Diagnostic | 99 |
| abstract_inverted_index.QTc-based) | 112 |
| abstract_inverted_index.assessment | 24 |
| abstract_inverted_index.commercial | 116, 169 |
| abstract_inverted_index.continuous | 1, 195 |
| abstract_inverted_index.diagnostic | 74 |
| abstract_inverted_index.intervals, | 82 |
| abstract_inverted_index.monitoring | 13, 196 |
| abstract_inverted_index.outpatient | 200 |
| abstract_inverted_index.parameters | 21 |
| abstract_inverted_index.real-world | 40 |
| abstract_inverted_index.screening, | 193 |
| abstract_inverted_index.supporting | 188 |
| abstract_inverted_index.ubiquitous | 33 |
| abstract_inverted_index.validation | 37 |
| abstract_inverted_index.abnormality | 183 |
| abstract_inverted_index.annotations | 88, 137 |
| abstract_inverted_index.benchmarked | 114 |
| abstract_inverted_index.centralized | 28 |
| abstract_inverted_index.computation | 17 |
| abstract_inverted_index.concordance | 134 |
| abstract_inverted_index.correlation | 94 |
| abstract_inverted_index.measurement | 6 |
| abstract_inverted_index.open-source | 122, 174 |
| abstract_inverted_index.performance | 100 |
| abstract_inverted_index.physicians' | 73 |
| abstract_inverted_index.physicians) | 64 |
| abstract_inverted_index.populations | 41 |
| abstract_inverted_index.processing, | 30 |
| abstract_inverted_index.single-lead | 19, 59, 186 |
| abstract_inverted_index.Bland-Altman | 97 |
| abstract_inverted_index.first-degree | 102 |
| abstract_inverted_index.participants | 57 |
| abstract_inverted_index.sensitivity, | 128 |
| abstract_inverted_index.specificity. | 130 |
| abstract_inverted_index.variability, | 144 |
| abstract_inverted_index.0.836-0.960), | 140 |
| abstract_inverted_index.alternatives. | 175 |
| abstract_inverted_index.annotations). | 75 |
| abstract_inverted_index.comprehensive | 36 |
| abstract_inverted_index.correlations: | 139 |
| abstract_inverted_index.decentralized | 191 |
| abstract_inverted_index.heterogeneous | 39 |
| abstract_inverted_index.personalized, | 32 |
| abstract_inverted_index.telemedicine, | 190 |
| abstract_inverted_index.telemedicine. | 15 |
| abstract_inverted_index.PTB-XL/PTB-XL+ | 66 |
| abstract_inverted_index.inter-observer | 143 |
| abstract_inverted_index.out-of-hospital | 2 |
| abstract_inverted_index.physician-level | 178 |
| abstract_inverted_index.atrioventricular | 103 |
| abstract_inverted_index.commercial-grade | 182 |
| abstract_inverted_index.0.569)-comparable | 167 |
| abstract_inverted_index.electrocardiogram | 3 |
| abstract_inverted_index.HeartVoice-ECG-lite | 55 |
| abstract_inverted_index.(https://github.com/PKUDigitalHealth/FeatureDB) | 51 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile |