On efficient adjustment in causal graphs Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3929/ethz-b-000459196
We consider estimation of a total causal effect from observational data via covariate adjustment. Ideally, adjustment sets are selected based on a given causal graph, reflecting knowledge of the underlying causal structure. Valid adjustment sets are, however, not unique. Recent research has introduced a graphical criterion for an 'optimal' valid adjustment set (O-set). For a given graph, adjustment by the O-set yields the smallest asymptotic variance compared to other adjustment sets in certain parametric and non-parametric models. In this paper, we provide three new results on the O-set. First, we give a novel, more intuitive graphical characterisation: We show that the O-set is the parent set of the outcome node(s) in a suitable latent projection graph, which we call the forbidden projection. An important property is that the forbidden projection preserves all information relevant to total causal effect estimation via covariate adjustment, making it a useful methodological tool in its own right. Second, we extend the existing IDA algorithm to use the O-set, and argue that the algorithm remains semi-local. This is implemented in the R-package pcalg. Third, we present assumptions under which the O-set can be viewed as the target set of popular non-graphical variable selection algorithms such as stepwise backward selection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://hdl.handle.net/20.500.11850/459196
- http://hdl.handle.net/20.500.11850/459196
- OA Status
- green
- Cited By
- 8
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3113479749
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3113479749Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3929/ethz-b-000459196Digital Object Identifier
- Title
-
On efficient adjustment in causal graphsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Janine Witte, Leonard Henckel, Marloes H. Maathuis, Vanessa DidelezList of authors in order
- Landing page
-
https://hdl.handle.net/20.500.11850/459196Publisher landing page
- PDF URL
-
https://hdl.handle.net/20.500.11850/459196Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/20.500.11850/459196Direct OA link when available
- Concepts
-
Covariate, Set (abstract data type), Causal structure, Parametric statistics, Graph, Projection (relational algebra), Mathematics, Graphical model, Algorithm, Computer science, Theoretical computer science, Artificial intelligence, Statistics, Programming language, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 2, 2021: 3, 2020: 2Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3113479749 |
|---|---|
| doi | https://doi.org/10.3929/ethz-b-000459196 |
| ids.doi | https://doi.org/10.3929/ethz-b-000459196 |
| ids.mag | 3113479749 |
| ids.openalex | https://openalex.org/W3113479749 |
| fwci | 1.72152353 |
| type | article |
| title | On efficient adjustment in causal graphs |
| biblio.issue | 246 |
| biblio.volume | 21 |
| biblio.last_page | 45 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10845 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9937000274658203 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Causal Inference Techniques |
| topics[1].id | https://openalex.org/T11303 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9882000088691711 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Bayesian Modeling and Causal Inference |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9082000255584717 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C119043178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6709749102592468 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[0].display_name | Covariate |
| concepts[1].id | https://openalex.org/C177264268 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6093724966049194 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[1].display_name | Set (abstract data type) |
| concepts[2].id | https://openalex.org/C163504300 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5650505423545837 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2364925 |
| concepts[2].display_name | Causal structure |
| concepts[3].id | https://openalex.org/C117251300 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5442975759506226 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[3].display_name | Parametric statistics |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.544218122959137 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C57493831 |
| concepts[5].level | 2 |
| concepts[5].score | 0.536385715007782 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[5].display_name | Projection (relational algebra) |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.49334827065467834 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C155846161 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4598461389541626 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1143367 |
| concepts[7].display_name | Graphical model |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4555458128452301 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.42339470982551575 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3236808776855469 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.27631014585494995 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.15040364861488342 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/covariate |
| keywords[0].score | 0.6709749102592468 |
| keywords[0].display_name | Covariate |
| keywords[1].id | https://openalex.org/keywords/set |
| keywords[1].score | 0.6093724966049194 |
| keywords[1].display_name | Set (abstract data type) |
| keywords[2].id | https://openalex.org/keywords/causal-structure |
| keywords[2].score | 0.5650505423545837 |
| keywords[2].display_name | Causal structure |
| keywords[3].id | https://openalex.org/keywords/parametric-statistics |
| keywords[3].score | 0.5442975759506226 |
| keywords[3].display_name | Parametric statistics |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.544218122959137 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/projection |
| keywords[5].score | 0.536385715007782 |
| keywords[5].display_name | Projection (relational algebra) |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.49334827065467834 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/graphical-model |
| keywords[7].score | 0.4598461389541626 |
| keywords[7].display_name | Graphical model |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.4555458128452301 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.42339470982551575 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.3236808776855469 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.27631014585494995 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.15040364861488342 |
| keywords[12].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:www.research-collection.ethz.ch:20.500.11850/459196 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402302 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Repository for Publications and Research Data (ETH Zurich) |
| locations[0].source.host_organization | https://openalex.org/I35440088 |
| locations[0].source.host_organization_name | ETH Zurich |
| locations[0].source.host_organization_lineage | https://openalex.org/I35440088 |
| locations[0].license | other-oa |
| locations[0].pdf_url | http://hdl.handle.net/20.500.11850/459196 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/article |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | Journal of Machine Learning Research, 21 |
| locations[0].landing_page_url | http://hdl.handle.net/20.500.11850/459196 |
| locations[1].id | pmh:oai:www.research-collection.ethz.ch:20.500.11850/470140 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402302 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Repository for Publications and Research Data (ETH Zurich) |
| locations[1].source.host_organization | https://openalex.org/I35440088 |
| locations[1].source.host_organization_name | ETH Zurich |
| locations[1].source.host_organization_lineage | https://openalex.org/I35440088 |
| locations[1].license | cc-by |
| locations[1].pdf_url | http://hdl.handle.net/20.500.11850/470140 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/publishedVersion |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Machine Learning Research, 21 |
| locations[1].landing_page_url | http://hdl.handle.net/20.500.11850/470140 |
| locations[2].id | doi:10.3929/ethz-b-000459196 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S7407051236 |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | ETH Zürich Research Collection |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.3929/ethz-b-000459196 |
| locations[3].id | mag:3113479749 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S118988714 |
| locations[3].source.issn | 1532-4435, 1533-7928 |
| locations[3].source.type | journal |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | 1532-4435 |
| locations[3].source.is_core | True |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Journal of Machine Learning Research |
| locations[3].source.host_organization | https://openalex.org/P4310315718 |
| locations[3].source.host_organization_name | The MIT Press |
| locations[3].source.host_organization_lineage | https://openalex.org/P4310315718 |
| locations[3].source.host_organization_lineage_names | The MIT Press |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | Journal of Machine Learning Research |
| locations[3].landing_page_url | http://jmlr.org/papers/volume21/20-175/20-175.pdf |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5035468346 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Janine Witte |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Janine Witte |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5006357369 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1000-3622 |
| authorships[1].author.display_name | Leonard Henckel |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Leonard Henckel |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5046971896 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3398-9893 |
| authorships[2].author.display_name | Marloes H. Maathuis |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Marloes H. Maathuis |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5038470056 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8587-7706 |
| authorships[3].author.display_name | Vanessa Didelez |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Vanessa Didelez |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/20.500.11850/459196 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On efficient adjustment in causal graphs |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10845 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9937000274658203 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Causal Inference Techniques |
| related_works | https://openalex.org/W3006529488, https://openalex.org/W2790098524, https://openalex.org/W2291131907, https://openalex.org/W3111256477, https://openalex.org/W1489999654, https://openalex.org/W2512532955, https://openalex.org/W2646400850, https://openalex.org/W2960658609, https://openalex.org/W1510240814, https://openalex.org/W2953656530, https://openalex.org/W2050502901, https://openalex.org/W2049910836, https://openalex.org/W1524326598, https://openalex.org/W3193908146, https://openalex.org/W2653711592, https://openalex.org/W2887207579, https://openalex.org/W3120130582, https://openalex.org/W1531392120, https://openalex.org/W1566079370, https://openalex.org/W3196200460 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:www.research-collection.ethz.ch:20.500.11850/459196 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402302 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Repository for Publications and Research Data (ETH Zurich) |
| best_oa_location.source.host_organization | https://openalex.org/I35440088 |
| best_oa_location.source.host_organization_name | ETH Zurich |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I35440088 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | http://hdl.handle.net/20.500.11850/459196 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Journal of Machine Learning Research, 21 |
| best_oa_location.landing_page_url | http://hdl.handle.net/20.500.11850/459196 |
| primary_location.id | pmh:oai:www.research-collection.ethz.ch:20.500.11850/459196 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402302 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Repository for Publications and Research Data (ETH Zurich) |
| primary_location.source.host_organization | https://openalex.org/I35440088 |
| primary_location.source.host_organization_name | ETH Zurich |
| primary_location.source.host_organization_lineage | https://openalex.org/I35440088 |
| primary_location.license | other-oa |
| primary_location.pdf_url | http://hdl.handle.net/20.500.11850/459196 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/article |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | Journal of Machine Learning Research, 21 |
| primary_location.landing_page_url | http://hdl.handle.net/20.500.11850/459196 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 21, 43, 54, 91, 111, 144 |
| abstract_inverted_index.An | 122 |
| abstract_inverted_index.In | 77 |
| abstract_inverted_index.We | 0, 97 |
| abstract_inverted_index.an | 47 |
| abstract_inverted_index.as | 188, 199 |
| abstract_inverted_index.be | 186 |
| abstract_inverted_index.by | 58 |
| abstract_inverted_index.in | 71, 110, 148, 173 |
| abstract_inverted_index.is | 102, 125, 171 |
| abstract_inverted_index.it | 143 |
| abstract_inverted_index.of | 3, 27, 106, 192 |
| abstract_inverted_index.on | 20, 85 |
| abstract_inverted_index.to | 67, 134, 159 |
| abstract_inverted_index.we | 80, 89, 117, 153, 178 |
| abstract_inverted_index.For | 53 |
| abstract_inverted_index.IDA | 157 |
| abstract_inverted_index.all | 131 |
| abstract_inverted_index.and | 74, 163 |
| abstract_inverted_index.are | 17 |
| abstract_inverted_index.can | 185 |
| abstract_inverted_index.for | 46 |
| abstract_inverted_index.has | 41 |
| abstract_inverted_index.its | 149 |
| abstract_inverted_index.new | 83 |
| abstract_inverted_index.not | 37 |
| abstract_inverted_index.own | 150 |
| abstract_inverted_index.set | 51, 105, 191 |
| abstract_inverted_index.the | 28, 59, 62, 86, 100, 103, 107, 119, 127, 155, 161, 166, 174, 183, 189 |
| abstract_inverted_index.use | 160 |
| abstract_inverted_index.via | 11, 139 |
| abstract_inverted_index.This | 170 |
| abstract_inverted_index.are, | 35 |
| abstract_inverted_index.call | 118 |
| abstract_inverted_index.data | 10 |
| abstract_inverted_index.from | 8 |
| abstract_inverted_index.give | 90 |
| abstract_inverted_index.more | 93 |
| abstract_inverted_index.sets | 16, 34, 70 |
| abstract_inverted_index.show | 98 |
| abstract_inverted_index.such | 198 |
| abstract_inverted_index.that | 99, 126, 165 |
| abstract_inverted_index.this | 78 |
| abstract_inverted_index.tool | 147 |
| abstract_inverted_index.O-set | 60, 101, 184 |
| abstract_inverted_index.Valid | 32 |
| abstract_inverted_index.argue | 164 |
| abstract_inverted_index.based | 19 |
| abstract_inverted_index.given | 22, 55 |
| abstract_inverted_index.other | 68 |
| abstract_inverted_index.three | 82 |
| abstract_inverted_index.total | 5, 135 |
| abstract_inverted_index.under | 181 |
| abstract_inverted_index.valid | 49 |
| abstract_inverted_index.which | 116, 182 |
| abstract_inverted_index.First, | 88 |
| abstract_inverted_index.O-set, | 162 |
| abstract_inverted_index.O-set. | 87 |
| abstract_inverted_index.Recent | 39 |
| abstract_inverted_index.Third, | 177 |
| abstract_inverted_index.causal | 6, 23, 30, 136 |
| abstract_inverted_index.effect | 7, 137 |
| abstract_inverted_index.extend | 154 |
| abstract_inverted_index.graph, | 24, 56, 115 |
| abstract_inverted_index.latent | 113 |
| abstract_inverted_index.making | 142 |
| abstract_inverted_index.novel, | 92 |
| abstract_inverted_index.paper, | 79 |
| abstract_inverted_index.parent | 104 |
| abstract_inverted_index.pcalg. | 176 |
| abstract_inverted_index.right. | 151 |
| abstract_inverted_index.target | 190 |
| abstract_inverted_index.useful | 145 |
| abstract_inverted_index.viewed | 187 |
| abstract_inverted_index.yields | 61 |
| abstract_inverted_index.Second, | 152 |
| abstract_inverted_index.certain | 72 |
| abstract_inverted_index.models. | 76 |
| abstract_inverted_index.node(s) | 109 |
| abstract_inverted_index.outcome | 108 |
| abstract_inverted_index.popular | 193 |
| abstract_inverted_index.present | 179 |
| abstract_inverted_index.provide | 81 |
| abstract_inverted_index.remains | 168 |
| abstract_inverted_index.results | 84 |
| abstract_inverted_index.unique. | 38 |
| abstract_inverted_index.(O-set). | 52 |
| abstract_inverted_index.Ideally, | 14 |
| abstract_inverted_index.backward | 201 |
| abstract_inverted_index.compared | 66 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.existing | 156 |
| abstract_inverted_index.however, | 36 |
| abstract_inverted_index.property | 124 |
| abstract_inverted_index.relevant | 133 |
| abstract_inverted_index.research | 40 |
| abstract_inverted_index.selected | 18 |
| abstract_inverted_index.smallest | 63 |
| abstract_inverted_index.stepwise | 200 |
| abstract_inverted_index.suitable | 112 |
| abstract_inverted_index.variable | 195 |
| abstract_inverted_index.variance | 65 |
| abstract_inverted_index.'optimal' | 48 |
| abstract_inverted_index.R-package | 175 |
| abstract_inverted_index.algorithm | 158, 167 |
| abstract_inverted_index.covariate | 12, 140 |
| abstract_inverted_index.criterion | 45 |
| abstract_inverted_index.forbidden | 120, 128 |
| abstract_inverted_index.graphical | 44, 95 |
| abstract_inverted_index.important | 123 |
| abstract_inverted_index.intuitive | 94 |
| abstract_inverted_index.knowledge | 26 |
| abstract_inverted_index.preserves | 130 |
| abstract_inverted_index.selection | 196 |
| abstract_inverted_index.adjustment | 15, 33, 50, 57, 69 |
| abstract_inverted_index.algorithms | 197 |
| abstract_inverted_index.asymptotic | 64 |
| abstract_inverted_index.estimation | 2, 138 |
| abstract_inverted_index.introduced | 42 |
| abstract_inverted_index.parametric | 73 |
| abstract_inverted_index.projection | 114, 129 |
| abstract_inverted_index.reflecting | 25 |
| abstract_inverted_index.selection. | 202 |
| abstract_inverted_index.structure. | 31 |
| abstract_inverted_index.underlying | 29 |
| abstract_inverted_index.adjustment, | 141 |
| abstract_inverted_index.adjustment. | 13 |
| abstract_inverted_index.assumptions | 180 |
| abstract_inverted_index.implemented | 172 |
| abstract_inverted_index.information | 132 |
| abstract_inverted_index.projection. | 121 |
| abstract_inverted_index.semi-local. | 169 |
| abstract_inverted_index.non-graphical | 194 |
| abstract_inverted_index.observational | 9 |
| abstract_inverted_index.methodological | 146 |
| abstract_inverted_index.non-parametric | 75 |
| abstract_inverted_index.characterisation: | 96 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.85755014 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |