On Learning Discriminative Features from Synthesized Data for Self-Supervised Fine-Grained Visual Recognition Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.14676
Self-Supervised Learning (SSL) has become a prominent approach for acquiring visual representations across various tasks, yet its application in fine-grained visual recognition (FGVR) is challenged by the intricate task of distinguishing subtle differences between categories. To overcome this, we introduce an novel strategy that boosts SSL's ability to extract critical discriminative features vital for FGVR. This approach creates synthesized data pairs to guide the model to focus on discriminative features critical for FGVR during SSL. We start by identifying non-discriminative features using two main criteria: features with low variance that fail to effectively separate data and those deemed less important by Grad-CAM induced from the SSL loss. We then introduce perturbations to these non-discriminative features while preserving discriminative ones. A decoder is employed to reconstruct images from both perturbed and original feature vectors to create data pairs. An encoder is trained on such generated data pairs to become invariant to variations in non-discriminative dimensions while focusing on discriminative features, thereby improving the model's performance in FGVR tasks. We demonstrate the promising FGVR performance of the proposed approach through extensive evaluation on a wide variety of datasets.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.14676
- https://arxiv.org/pdf/2407.14676
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406072111
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406072111Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.14676Digital Object Identifier
- Title
-
On Learning Discriminative Features from Synthesized Data for Self-Supervised Fine-Grained Visual RecognitionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-19Full publication date if available
- Authors
-
Zihu Wang, Lingqiao Liu, Scott Ricardo Figueroa Weston, Sibo Tian, Peng LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.14676Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.14676Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.14676Direct OA link when available
- Concepts
-
Discriminative model, Computer science, Pattern recognition (psychology), Artificial intelligence, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406072111 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.14676 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.14676 |
| ids.openalex | https://openalex.org/W4406072111 |
| fwci | 0.0 |
| type | preprint |
| title | On Learning Discriminative Features from Synthesized Data for Self-Supervised Fine-Grained Visual Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.6485999822616577 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97931131 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8585612773895264 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[0].display_name | Discriminative model |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6667032241821289 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6298508644104004 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6116368174552917 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33897897601127625 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/discriminative-model |
| keywords[0].score | 0.8585612773895264 |
| keywords[0].display_name | Discriminative model |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6667032241821289 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.6298508644104004 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6116368174552917 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.33897897601127625 |
| keywords[4].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.14676 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.14676 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.14676 |
| locations[1].id | doi:10.48550/arxiv.2407.14676 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.14676 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5067730143 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-5132-2613 |
| authorships[0].author.display_name | Zihu Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Zihu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5070976480 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3584-795X |
| authorships[1].author.display_name | Lingqiao Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Lingqiao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114770071 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Scott Ricardo Figueroa Weston |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Weston, Scott Ricardo Figueroa |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5048786190 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5018-4854 |
| authorships[3].author.display_name | Sibo Tian |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tian, Samuel |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100432782 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3548-4589 |
| authorships[4].author.display_name | Peng Li |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Li, Peng |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.14676 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On Learning Discriminative Features from Synthesized Data for Self-Supervised Fine-Grained Visual Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.6485999822616577 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W2404514746, https://openalex.org/W4306674287, https://openalex.org/W1652783584, https://openalex.org/W2082783427, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.14676 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.14676 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.14676 |
| primary_location.id | pmh:oai:arXiv.org:2407.14676 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.14676 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.14676 |
| publication_date | 2024-07-19 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 119 |
| abstract_inverted_index.a | 5, 181 |
| abstract_inverted_index.An | 137 |
| abstract_inverted_index.To | 35 |
| abstract_inverted_index.We | 75, 107, 167 |
| abstract_inverted_index.an | 40 |
| abstract_inverted_index.by | 25, 77, 100 |
| abstract_inverted_index.in | 18, 151, 164 |
| abstract_inverted_index.is | 23, 121, 139 |
| abstract_inverted_index.of | 29, 173, 184 |
| abstract_inverted_index.on | 67, 141, 156, 180 |
| abstract_inverted_index.to | 47, 61, 65, 91, 111, 123, 133, 146, 149 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.SSL | 105 |
| abstract_inverted_index.and | 95, 129 |
| abstract_inverted_index.for | 8, 53, 71 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.its | 16 |
| abstract_inverted_index.low | 87 |
| abstract_inverted_index.the | 26, 63, 104, 161, 169, 174 |
| abstract_inverted_index.two | 82 |
| abstract_inverted_index.yet | 15 |
| abstract_inverted_index.FGVR | 72, 165, 171 |
| abstract_inverted_index.SSL. | 74 |
| abstract_inverted_index.This | 55 |
| abstract_inverted_index.both | 127 |
| abstract_inverted_index.data | 59, 94, 135, 144 |
| abstract_inverted_index.fail | 90 |
| abstract_inverted_index.from | 103, 126 |
| abstract_inverted_index.less | 98 |
| abstract_inverted_index.main | 83 |
| abstract_inverted_index.such | 142 |
| abstract_inverted_index.task | 28 |
| abstract_inverted_index.that | 43, 89 |
| abstract_inverted_index.then | 108 |
| abstract_inverted_index.wide | 182 |
| abstract_inverted_index.with | 86 |
| abstract_inverted_index.(SSL) | 2 |
| abstract_inverted_index.FGVR. | 54 |
| abstract_inverted_index.SSL's | 45 |
| abstract_inverted_index.focus | 66 |
| abstract_inverted_index.guide | 62 |
| abstract_inverted_index.loss. | 106 |
| abstract_inverted_index.model | 64 |
| abstract_inverted_index.novel | 41 |
| abstract_inverted_index.ones. | 118 |
| abstract_inverted_index.pairs | 60, 145 |
| abstract_inverted_index.start | 76 |
| abstract_inverted_index.these | 112 |
| abstract_inverted_index.this, | 37 |
| abstract_inverted_index.those | 96 |
| abstract_inverted_index.using | 81 |
| abstract_inverted_index.vital | 52 |
| abstract_inverted_index.while | 115, 154 |
| abstract_inverted_index.(FGVR) | 22 |
| abstract_inverted_index.across | 12 |
| abstract_inverted_index.become | 4, 147 |
| abstract_inverted_index.boosts | 44 |
| abstract_inverted_index.create | 134 |
| abstract_inverted_index.deemed | 97 |
| abstract_inverted_index.during | 73 |
| abstract_inverted_index.images | 125 |
| abstract_inverted_index.pairs. | 136 |
| abstract_inverted_index.subtle | 31 |
| abstract_inverted_index.tasks, | 14 |
| abstract_inverted_index.tasks. | 166 |
| abstract_inverted_index.visual | 10, 20 |
| abstract_inverted_index.ability | 46 |
| abstract_inverted_index.between | 33 |
| abstract_inverted_index.creates | 57 |
| abstract_inverted_index.decoder | 120 |
| abstract_inverted_index.encoder | 138 |
| abstract_inverted_index.extract | 48 |
| abstract_inverted_index.feature | 131 |
| abstract_inverted_index.induced | 102 |
| abstract_inverted_index.model's | 162 |
| abstract_inverted_index.thereby | 159 |
| abstract_inverted_index.through | 177 |
| abstract_inverted_index.trained | 140 |
| abstract_inverted_index.variety | 183 |
| abstract_inverted_index.various | 13 |
| abstract_inverted_index.vectors | 132 |
| abstract_inverted_index.Grad-CAM | 101 |
| abstract_inverted_index.Learning | 1 |
| abstract_inverted_index.approach | 7, 56, 176 |
| abstract_inverted_index.critical | 49, 70 |
| abstract_inverted_index.employed | 122 |
| abstract_inverted_index.features | 51, 69, 80, 85, 114 |
| abstract_inverted_index.focusing | 155 |
| abstract_inverted_index.original | 130 |
| abstract_inverted_index.overcome | 36 |
| abstract_inverted_index.proposed | 175 |
| abstract_inverted_index.separate | 93 |
| abstract_inverted_index.strategy | 42 |
| abstract_inverted_index.variance | 88 |
| abstract_inverted_index.acquiring | 9 |
| abstract_inverted_index.criteria: | 84 |
| abstract_inverted_index.datasets. | 185 |
| abstract_inverted_index.extensive | 178 |
| abstract_inverted_index.features, | 158 |
| abstract_inverted_index.generated | 143 |
| abstract_inverted_index.important | 99 |
| abstract_inverted_index.improving | 160 |
| abstract_inverted_index.intricate | 27 |
| abstract_inverted_index.introduce | 39, 109 |
| abstract_inverted_index.invariant | 148 |
| abstract_inverted_index.perturbed | 128 |
| abstract_inverted_index.prominent | 6 |
| abstract_inverted_index.promising | 170 |
| abstract_inverted_index.challenged | 24 |
| abstract_inverted_index.dimensions | 153 |
| abstract_inverted_index.evaluation | 179 |
| abstract_inverted_index.preserving | 116 |
| abstract_inverted_index.variations | 150 |
| abstract_inverted_index.application | 17 |
| abstract_inverted_index.categories. | 34 |
| abstract_inverted_index.demonstrate | 168 |
| abstract_inverted_index.differences | 32 |
| abstract_inverted_index.effectively | 92 |
| abstract_inverted_index.identifying | 78 |
| abstract_inverted_index.performance | 163, 172 |
| abstract_inverted_index.recognition | 21 |
| abstract_inverted_index.reconstruct | 124 |
| abstract_inverted_index.synthesized | 58 |
| abstract_inverted_index.fine-grained | 19 |
| abstract_inverted_index.perturbations | 110 |
| abstract_inverted_index.discriminative | 50, 68, 117, 157 |
| abstract_inverted_index.distinguishing | 30 |
| abstract_inverted_index.Self-Supervised | 0 |
| abstract_inverted_index.representations | 11 |
| abstract_inverted_index.non-discriminative | 79, 113, 152 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |