On maximal Roman domination in graphs: complexity and algorithms Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1051/ro/2024038
For a simple undirected connected graph G = ( V, E ), a maximal Roman dominating function (MRDF) of G is a function f : V ( G ) → {0, 1, 2} with the following properties: ( i ) For every vertex v ∈ { v ∈ V | f ( v ) = 0}, there exists a vertex u ∈ N ( v ) such that f ( u ) = 2. ( ii ) The set { v ∈ V|f ( v ) = 0} is not a dominating set of G ; In other words, there exists a vertex v ∈ { v ∈ V | f ( v ) ≠ 0} such that N ( v ) ∩ { u ∈ V | f ( u ) = 0} ∅ . The weight of an MRDF of G is the sum of its function values over all vertices, denoted as f ( G ) = ∑ v ∈ V ( G ) f ( v ), and the maximal Roman domination number of G , denoted by γ mR ( G ), is the minimum weight of an MRDF of G . In this paper, we establish some bounds of the maximal Roman domination number of graphs. Additionally, we develop an integer linear programming formulation to compute the maximal Roman domination number of any graph. Furthermore, we prove that maximal Roman domination problem (MRD) is NP-complete even restricted to star convex bipartite graphs and chordal bipartite graphs. Lastly, we show the maximal Roman domination number of threshold graphs, trees, and block graphs can be computed in linear time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1051/ro/2024038
- OA Status
- diamond
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391772559
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391772559Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/ro/2024038Digital Object Identifier
- Title
-
On maximal Roman domination in graphs: complexity and algorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-13Full publication date if available
- Authors
-
Zehui Shao, Yonghao Song, Qiyun Liu, Zhixing Duan, Huiqin JiangList of authors in order
- Landing page
-
https://doi.org/10.1051/ro/2024038Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1051/ro/2024038Direct OA link when available
- Concepts
-
Computer science, Algorithm, Combinatorics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391772559 |
|---|---|
| doi | https://doi.org/10.1051/ro/2024038 |
| ids.doi | https://doi.org/10.1051/ro/2024038 |
| ids.openalex | https://openalex.org/W4391772559 |
| fwci | 0.0 |
| type | article |
| title | On maximal Roman domination in graphs: complexity and algorithms |
| awards[0].id | https://openalex.org/G5657167529 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62172116 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 4 |
| biblio.volume | 58 |
| biblio.last_page | 2731 |
| biblio.first_page | 2709 |
| topics[0].id | https://openalex.org/T10374 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Graph Theory Research |
| topics[1].id | https://openalex.org/T12541 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9902999997138977 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Graph Labeling and Dimension Problems |
| topics[2].id | https://openalex.org/T10720 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9869999885559082 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Complexity and Algorithms in Graphs |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4511435031890869 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.45113405585289 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C114614502 |
| concepts[2].level | 1 |
| concepts[2].score | 0.38474440574645996 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[2].display_name | Combinatorics |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.37049493193626404 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.4511435031890869 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.45113405585289 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/combinatorics |
| keywords[2].score | 0.38474440574645996 |
| keywords[2].display_name | Combinatorics |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.37049493193626404 |
| keywords[3].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1051/ro/2024038 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4393919633 |
| locations[0].source.issn | 2804-7303 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2804-7303 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | RAIRO. Operations research |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | RAIRO - Operations Research |
| locations[0].landing_page_url | https://doi.org/10.1051/ro/2024038 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5012636371 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0764-4135 |
| authorships[0].author.display_name | Zehui Shao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zehui Shao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101557904 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1700-1133 |
| authorships[1].author.display_name | Yonghao Song |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yonghao Song |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014476053 |
| authorships[2].author.orcid | https://orcid.org/0009-0009-9545-7962 |
| authorships[2].author.display_name | Qiyun Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiyun Liu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5009874737 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9011-6653 |
| authorships[3].author.display_name | Zhixing Duan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhixing Duan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5032769891 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3316-877X |
| authorships[4].author.display_name | Huiqin Jiang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Huiqin Jiang |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1051/ro/2024038 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On maximal Roman domination in graphs: complexity and algorithms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10374 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Graph Theory Research |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W4245490552, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W1587224694, https://openalex.org/W2042127053, https://openalex.org/W2142036596 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1051/ro/2024038 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4393919633 |
| best_oa_location.source.issn | 2804-7303 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2804-7303 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | RAIRO. Operations research |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | RAIRO - Operations Research |
| best_oa_location.landing_page_url | https://doi.org/10.1051/ro/2024038 |
| primary_location.id | doi:10.1051/ro/2024038 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4393919633 |
| primary_location.source.issn | 2804-7303 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2804-7303 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | RAIRO. Operations research |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | RAIRO - Operations Research |
| primary_location.landing_page_url | https://doi.org/10.1051/ro/2024038 |
| publication_date | 2024-02-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1484040084, https://openalex.org/W2058946695, https://openalex.org/W2026300475, https://openalex.org/W1984228559, https://openalex.org/W2595550610, https://openalex.org/W2967821251, https://openalex.org/W1108868487, https://openalex.org/W3043697555, https://openalex.org/W4214937823, https://openalex.org/W2337802335, https://openalex.org/W2474076680, https://openalex.org/W2898860148, https://openalex.org/W2058460385, https://openalex.org/W3016425788, https://openalex.org/W2320924352, https://openalex.org/W2767964623 |
| referenced_works_count | 16 |
| abstract_inverted_index.( | 8, 26, 37, 51, 63, 69, 74, 83, 111, 119, 129, 156, 164, 168, 184 |
| abstract_inverted_index.) | 28, 39, 53, 65, 71, 76, 85, 113, 121, 131, 158, 166 |
| abstract_inverted_index., | 179 |
| abstract_inverted_index.. | 135, 196 |
| abstract_inverted_index.: | 24 |
| abstract_inverted_index.; | 95 |
| abstract_inverted_index.= | 7, 54, 72, 86, 132, 159 |
| abstract_inverted_index.E | 10 |
| abstract_inverted_index.G | 6, 19, 27, 94, 142, 157, 165, 178, 185, 195 |
| abstract_inverted_index.N | 62, 118 |
| abstract_inverted_index.V | 25, 48, 108, 126, 163 |
| abstract_inverted_index.a | 1, 12, 21, 58, 90, 101 |
| abstract_inverted_index.f | 23, 50, 68, 110, 128, 155, 167 |
| abstract_inverted_index.i | 38 |
| abstract_inverted_index.u | 60, 70, 124, 130 |
| abstract_inverted_index.v | 43, 46, 52, 64, 80, 84, 103, 106, 112, 120, 161, 169 |
| abstract_inverted_index.{ | 45, 79, 105, 123 |
| abstract_inverted_index.| | 49, 109, 127 |
| abstract_inverted_index.), | 11, 170, 186 |
| abstract_inverted_index.0} | 87, 115, 133 |
| abstract_inverted_index.1, | 31 |
| abstract_inverted_index.2. | 73 |
| abstract_inverted_index.2} | 32 |
| abstract_inverted_index.In | 96, 197 |
| abstract_inverted_index.V, | 9 |
| abstract_inverted_index.an | 139, 192, 215 |
| abstract_inverted_index.as | 154 |
| abstract_inverted_index.be | 268 |
| abstract_inverted_index.by | 181 |
| abstract_inverted_index.ii | 75 |
| abstract_inverted_index.in | 270 |
| abstract_inverted_index.is | 20, 88, 143, 187, 239 |
| abstract_inverted_index.mR | 183 |
| abstract_inverted_index.of | 18, 93, 138, 141, 146, 177, 191, 194, 204, 210, 227, 260 |
| abstract_inverted_index.to | 220, 243 |
| abstract_inverted_index.we | 200, 213, 231, 253 |
| abstract_inverted_index.γ | 182 |
| abstract_inverted_index.0}, | 55 |
| abstract_inverted_index.For | 0, 40 |
| abstract_inverted_index.The | 77, 136 |
| abstract_inverted_index.V|f | 82 |
| abstract_inverted_index.all | 151 |
| abstract_inverted_index.and | 171, 248, 264 |
| abstract_inverted_index.any | 228 |
| abstract_inverted_index.can | 267 |
| abstract_inverted_index.its | 147 |
| abstract_inverted_index.not | 89 |
| abstract_inverted_index.set | 78, 92 |
| abstract_inverted_index.sum | 145 |
| abstract_inverted_index.the | 34, 144, 172, 188, 205, 222, 255 |
| abstract_inverted_index.{0, | 30 |
| abstract_inverted_index.→ | 29 |
| abstract_inverted_index.∅ | 134 |
| abstract_inverted_index.∈ | 44, 47, 61, 81, 104, 107, 125, 162 |
| abstract_inverted_index.∑ | 160 |
| abstract_inverted_index.∩ | 122 |
| abstract_inverted_index.≠ | 114 |
| abstract_inverted_index.MRDF | 140, 193 |
| abstract_inverted_index.even | 241 |
| abstract_inverted_index.over | 150 |
| abstract_inverted_index.show | 254 |
| abstract_inverted_index.some | 202 |
| abstract_inverted_index.star | 244 |
| abstract_inverted_index.such | 66, 116 |
| abstract_inverted_index.that | 67, 117, 233 |
| abstract_inverted_index.this | 198 |
| abstract_inverted_index.with | 33 |
| abstract_inverted_index.(MRD) | 238 |
| abstract_inverted_index.Roman | 14, 174, 207, 224, 235, 257 |
| abstract_inverted_index.block | 265 |
| abstract_inverted_index.every | 41 |
| abstract_inverted_index.graph | 5 |
| abstract_inverted_index.other | 97 |
| abstract_inverted_index.prove | 232 |
| abstract_inverted_index.there | 56, 99 |
| abstract_inverted_index.time. | 272 |
| abstract_inverted_index.(MRDF) | 17 |
| abstract_inverted_index.bounds | 203 |
| abstract_inverted_index.convex | 245 |
| abstract_inverted_index.exists | 57, 100 |
| abstract_inverted_index.graph. | 229 |
| abstract_inverted_index.graphs | 247, 266 |
| abstract_inverted_index.linear | 217, 271 |
| abstract_inverted_index.number | 176, 209, 226, 259 |
| abstract_inverted_index.paper, | 199 |
| abstract_inverted_index.simple | 2 |
| abstract_inverted_index.trees, | 263 |
| abstract_inverted_index.values | 149 |
| abstract_inverted_index.vertex | 42, 59, 102 |
| abstract_inverted_index.weight | 137, 190 |
| abstract_inverted_index.words, | 98 |
| abstract_inverted_index.Lastly, | 252 |
| abstract_inverted_index.chordal | 249 |
| abstract_inverted_index.compute | 221 |
| abstract_inverted_index.denoted | 153, 180 |
| abstract_inverted_index.develop | 214 |
| abstract_inverted_index.graphs, | 262 |
| abstract_inverted_index.graphs. | 211, 251 |
| abstract_inverted_index.integer | 216 |
| abstract_inverted_index.maximal | 13, 173, 206, 223, 234, 256 |
| abstract_inverted_index.minimum | 189 |
| abstract_inverted_index.problem | 237 |
| abstract_inverted_index.computed | 269 |
| abstract_inverted_index.function | 16, 22, 148 |
| abstract_inverted_index.bipartite | 246, 250 |
| abstract_inverted_index.connected | 4 |
| abstract_inverted_index.establish | 201 |
| abstract_inverted_index.following | 35 |
| abstract_inverted_index.threshold | 261 |
| abstract_inverted_index.vertices, | 152 |
| abstract_inverted_index.dominating | 15, 91 |
| abstract_inverted_index.domination | 175, 208, 225, 236, 258 |
| abstract_inverted_index.restricted | 242 |
| abstract_inverted_index.undirected | 3 |
| abstract_inverted_index.NP-complete | 240 |
| abstract_inverted_index.formulation | 219 |
| abstract_inverted_index.programming | 218 |
| abstract_inverted_index.properties: | 36 |
| abstract_inverted_index.Furthermore, | 230 |
| abstract_inverted_index.Additionally, | 212 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.03220046 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |