On Model-Free Re-Ranking for Visual Place Recognition With Deep Learned Local Features Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/tiv.2024.3404564
Re-ranking is the second stage of a visual place recognition task, in which\nthe system chooses the best-matching images from a pre-selected subset of\ncandidates. Model-free approaches compute the image pair similarity based on a\nspatial comparison of corresponding local visual features, eliminating the need\nfor computationally expensive estimation of a model describing transformation\nbetween images. The article focuses on model-free re-ranking based on standard\nlocal visual features and their applicability in long-term autonomy systems. It\nintroduces three new model-free re-ranking methods that were designed primarily\nfor deep-learned local visual features. These features evince high robustness\nto various appearance changes, which stands as a crucial property for use with\nlong-term autonomy systems. All the introduced methods were employed in a new\nvisual place recognition system together with the D2-net feature detector\n(Dusmanu, 2019) and experimentally tested with diverse, challenging public\ndatasets. The obtained results are on par with current state-of-the-art\nmethods, affirming that model-free approaches are a viable and worthwhile path\nfor long-term visual place recognition.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tiv.2024.3404564
- OA Status
- green
- Cited By
- 3
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398249504
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398249504Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tiv.2024.3404564Digital Object Identifier
- Title
-
On Model-Free Re-Ranking for Visual Place Recognition With Deep Learned Local FeaturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-23Full publication date if available
- Authors
-
Tomáš Pivoňka, Libor PřeučilList of authors in order
- Landing page
-
https://doi.org/10.1109/tiv.2024.3404564Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.18573Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Ranking (information retrieval), Robustness (evolution), Visualization, Pattern recognition (psychology), Machine learning, Term (time), Computer vision, Physics, Quantum mechanics, Chemistry, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398249504 |
|---|---|
| doi | https://doi.org/10.1109/tiv.2024.3404564 |
| ids.doi | https://doi.org/10.1109/tiv.2024.3404564 |
| ids.openalex | https://openalex.org/W4398249504 |
| fwci | 3.95731842 |
| type | article |
| title | On Model-Free Re-Ranking for Visual Place Recognition With Deep Learned Local Features |
| biblio.issue | 12 |
| biblio.volume | 9 |
| biblio.last_page | 7911 |
| biblio.first_page | 7900 |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T10326 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Indoor and Outdoor Localization Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7452097535133362 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.713882565498352 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C189430467 |
| concepts[2].level | 2 |
| concepts[2].score | 0.684466540813446 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[2].display_name | Ranking (information retrieval) |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6132732033729553 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C36464697 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49524107575416565 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[4].display_name | Visualization |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4935184717178345 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41745007038116455 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C61797465 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41502758860588074 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[7].display_name | Term (time) |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33388257026672363 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C104317684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[12].display_name | Gene |
| concepts[13].id | https://openalex.org/C55493867 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[13].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7452097535133362 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.713882565498352 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/ranking |
| keywords[2].score | 0.684466540813446 |
| keywords[2].display_name | Ranking (information retrieval) |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.6132732033729553 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/visualization |
| keywords[4].score | 0.49524107575416565 |
| keywords[4].display_name | Visualization |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.4935184717178345 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.41745007038116455 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/term |
| keywords[7].score | 0.41502758860588074 |
| keywords[7].display_name | Term (time) |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.33388257026672363 |
| keywords[8].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1109/tiv.2024.3404564 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210199657 |
| locations[0].source.issn | 2379-8858, 2379-8904 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2379-8858 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Intelligent Vehicles |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Intelligent Vehicles |
| locations[0].landing_page_url | https://doi.org/10.1109/tiv.2024.3404564 |
| locations[1].id | pmh:oai:arXiv.org:2410.18573 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2410.18573 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2410.18573 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5031031592 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1466-5156 |
| authorships[0].author.display_name | Tomáš Pivoňka |
| authorships[0].countries | CZ |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I44504214 |
| authorships[0].affiliations[0].raw_affiliation_string | Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I44504214 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic |
| authorships[0].institutions[0].id | https://openalex.org/I44504214 |
| authorships[0].institutions[0].ror | https://ror.org/03kqpb082 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I44504214 |
| authorships[0].institutions[0].country_code | CZ |
| authorships[0].institutions[0].display_name | Czech Technical University in Prague |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tomáš Pivoňka |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic |
| authorships[1].author.id | https://openalex.org/A5004686576 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4286-3870 |
| authorships[1].author.display_name | Libor Přeučil |
| authorships[1].countries | CZ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I44504214 |
| authorships[1].affiliations[0].raw_affiliation_string | Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic |
| authorships[1].institutions[0].id | https://openalex.org/I44504214 |
| authorships[1].institutions[0].ror | https://ror.org/03kqpb082 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I44504214 |
| authorships[1].institutions[0].country_code | CZ |
| authorships[1].institutions[0].display_name | Czech Technical University in Prague |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Libor Přeučil |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Czech Republic |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.18573 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-24T00:00:00 |
| display_name | On Model-Free Re-Ranking for Visual Place Recognition With Deep Learned Local Features |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W2068608913, https://openalex.org/W3124914020, https://openalex.org/W2141033859, https://openalex.org/W2156434174, https://openalex.org/W2071701083, https://openalex.org/W2383687187, https://openalex.org/W2081517010, https://openalex.org/W2121496884, https://openalex.org/W2387910809, https://openalex.org/W2294221496 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.18573 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.18573 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.18573 |
| primary_location.id | doi:10.1109/tiv.2024.3404564 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210199657 |
| primary_location.source.issn | 2379-8858, 2379-8904 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2379-8858 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Intelligent Vehicles |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Intelligent Vehicles |
| primary_location.landing_page_url | https://doi.org/10.1109/tiv.2024.3404564 |
| publication_date | 2024-05-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3124676898, https://openalex.org/W3132274946, https://openalex.org/W1896794744, https://openalex.org/W3173736705, https://openalex.org/W2081332440, https://openalex.org/W3081509258, https://openalex.org/W2979458572, https://openalex.org/W4385815496, https://openalex.org/W4319300119, https://openalex.org/W2012592962, https://openalex.org/W2951019013, https://openalex.org/W3184915579, https://openalex.org/W3043075211, https://openalex.org/W3034275286, https://openalex.org/W2963588253, https://openalex.org/W4312854990, https://openalex.org/W6861928822, https://openalex.org/W2151103935, https://openalex.org/W1981857004, https://openalex.org/W2065296697, https://openalex.org/W2916040547, https://openalex.org/W2963760790, https://openalex.org/W2740418457, https://openalex.org/W2558027072, https://openalex.org/W2744874208, https://openalex.org/W6803218418, https://openalex.org/W2079112914, https://openalex.org/W6851958940, https://openalex.org/W2013270301, https://openalex.org/W4300614726, https://openalex.org/W4367359398, https://openalex.org/W4392120897, https://openalex.org/W3210818563 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 6, 19, 46, 94, 109, 142 |
| abstract_inverted_index.as | 93 |
| abstract_inverted_index.in | 11, 65, 108 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 5, 34, 45 |
| abstract_inverted_index.on | 31, 54, 58, 132 |
| abstract_inverted_index.All | 102 |
| abstract_inverted_index.The | 51, 128 |
| abstract_inverted_index.and | 62, 121, 144 |
| abstract_inverted_index.are | 131, 141 |
| abstract_inverted_index.for | 97 |
| abstract_inverted_index.new | 71 |
| abstract_inverted_index.par | 133 |
| abstract_inverted_index.the | 2, 15, 26, 40, 103, 116 |
| abstract_inverted_index.use | 98 |
| abstract_inverted_index.from | 18 |
| abstract_inverted_index.high | 86 |
| abstract_inverted_index.pair | 28 |
| abstract_inverted_index.that | 75, 138 |
| abstract_inverted_index.were | 76, 106 |
| abstract_inverted_index.with | 115, 124, 134 |
| abstract_inverted_index.2019) | 120 |
| abstract_inverted_index.These | 83 |
| abstract_inverted_index.based | 30, 57 |
| abstract_inverted_index.image | 27 |
| abstract_inverted_index.local | 36, 80 |
| abstract_inverted_index.model | 47 |
| abstract_inverted_index.place | 8, 111, 149 |
| abstract_inverted_index.stage | 4 |
| abstract_inverted_index.task, | 10 |
| abstract_inverted_index.their | 63 |
| abstract_inverted_index.three | 70 |
| abstract_inverted_index.which | 91 |
| abstract_inverted_index.D2-net | 117 |
| abstract_inverted_index.evince | 85 |
| abstract_inverted_index.images | 17 |
| abstract_inverted_index.second | 3 |
| abstract_inverted_index.stands | 92 |
| abstract_inverted_index.subset | 21 |
| abstract_inverted_index.system | 13, 113 |
| abstract_inverted_index.tested | 123 |
| abstract_inverted_index.viable | 143 |
| abstract_inverted_index.visual | 7, 37, 60, 81, 148 |
| abstract_inverted_index.article | 52 |
| abstract_inverted_index.chooses | 14 |
| abstract_inverted_index.compute | 25 |
| abstract_inverted_index.crucial | 95 |
| abstract_inverted_index.current | 135 |
| abstract_inverted_index.feature | 118 |
| abstract_inverted_index.focuses | 53 |
| abstract_inverted_index.images. | 50 |
| abstract_inverted_index.methods | 74, 105 |
| abstract_inverted_index.results | 130 |
| abstract_inverted_index.various | 88 |
| abstract_inverted_index.autonomy | 67, 100 |
| abstract_inverted_index.changes, | 90 |
| abstract_inverted_index.designed | 77 |
| abstract_inverted_index.diverse, | 125 |
| abstract_inverted_index.employed | 107 |
| abstract_inverted_index.features | 61, 84 |
| abstract_inverted_index.obtained | 129 |
| abstract_inverted_index.property | 96 |
| abstract_inverted_index.systems. | 68, 101 |
| abstract_inverted_index.together | 114 |
| abstract_inverted_index.affirming | 137 |
| abstract_inverted_index.expensive | 43 |
| abstract_inverted_index.features, | 38 |
| abstract_inverted_index.features. | 82 |
| abstract_inverted_index.long-term | 66, 147 |
| abstract_inverted_index.need\nfor | 41 |
| abstract_inverted_index.path\nfor | 146 |
| abstract_inverted_index.Model-free | 23 |
| abstract_inverted_index.Re-ranking | 0 |
| abstract_inverted_index.a\nspatial | 32 |
| abstract_inverted_index.appearance | 89 |
| abstract_inverted_index.approaches | 24, 140 |
| abstract_inverted_index.comparison | 33 |
| abstract_inverted_index.describing | 48 |
| abstract_inverted_index.estimation | 44 |
| abstract_inverted_index.introduced | 104 |
| abstract_inverted_index.model-free | 55, 72, 139 |
| abstract_inverted_index.re-ranking | 56, 73 |
| abstract_inverted_index.similarity | 29 |
| abstract_inverted_index.which\nthe | 12 |
| abstract_inverted_index.worthwhile | 145 |
| abstract_inverted_index.challenging | 126 |
| abstract_inverted_index.eliminating | 39 |
| abstract_inverted_index.new\nvisual | 110 |
| abstract_inverted_index.recognition | 9, 112 |
| abstract_inverted_index.deep-learned | 79 |
| abstract_inverted_index.pre-selected | 20 |
| abstract_inverted_index.applicability | 64 |
| abstract_inverted_index.best-matching | 16 |
| abstract_inverted_index.corresponding | 35 |
| abstract_inverted_index.It\nintroduces | 69 |
| abstract_inverted_index.experimentally | 122 |
| abstract_inverted_index.primarily\nfor | 78 |
| abstract_inverted_index.recognition.\n | 150 |
| abstract_inverted_index.robustness\nto | 87 |
| abstract_inverted_index.computationally | 42 |
| abstract_inverted_index.of\ncandidates. | 22 |
| abstract_inverted_index.standard\nlocal | 59 |
| abstract_inverted_index.with\nlong-term | 99 |
| abstract_inverted_index.public\ndatasets. | 127 |
| abstract_inverted_index.detector\n(Dusmanu, | 119 |
| abstract_inverted_index.transformation\nbetween | 49 |
| abstract_inverted_index.state-of-the-art\nmethods, | 136 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.90576609 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |