On Outsourcing Artificial Neural Network Learning of Privacy-Sensitive Medical Data to the Cloud Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/ictai52525.2021.00062
Machine learning and artificial neural networks (ANNs) have been at the forefront of medical research in the last few years. It is well known that ANNs benefit from big data and the collection of the data is often decentralized, meaning that it is stored in different computer systems. There is a practical need to bring the distributed data together with the purpose of training a more accurate ANN. However, the privacy concern prevents medical institutes from sharing patient data freely. Federated learning and multi-party computation have been proposed to address this concern. However, they require the medical data collectors to participate in the deep-learning computations of the data users, which is inconvenient or even infeasible in practice. In this paper, we propose to use matrix masking for privacy protection of patient data. It allows the data collectors to outsource privacy-sensitive medical data to the cloud in a masked form, and allows the data users to outsource deep learning to the cloud as well, where the ANN models can be trained directly from the masked data. Our experimental results on deep-learning models for diagnosis of Alzheimer's disease and Parkinson's disease show that the diagnosis accuracy of the models trained from the masked data is similar to that of the models from the original patient data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/ictai52525.2021.00062
- OA Status
- green
- Cited By
- 6
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200188535
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200188535Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/ictai52525.2021.00062Digital Object Identifier
- Title
-
On Outsourcing Artificial Neural Network Learning of Privacy-Sensitive Medical Data to the CloudWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-01Full publication date if available
- Authors
-
Dimitrios Melissourgos, Hanzhi Gao, Chaoyi Ma, Shigang Chen, Samuel S. WuList of authors in order
- Landing page
-
https://doi.org/10.1109/ictai52525.2021.00062Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/8796752Direct OA link when available
- Concepts
-
Cloud computing, Outsourcing, Artificial neural network, Computer science, Information privacy, Artificial intelligence, Computer security, Business, Operating system, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 2, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200188535 |
|---|---|
| doi | https://doi.org/10.1109/ictai52525.2021.00062 |
| ids.doi | https://doi.org/10.1109/ictai52525.2021.00062 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35095256 |
| ids.openalex | https://openalex.org/W4200188535 |
| fwci | 0.61309853 |
| type | article |
| title | On Outsourcing Artificial Neural Network Learning of Privacy-Sensitive Medical Data to the Cloud |
| biblio.issue | |
| biblio.volume | 2021 |
| biblio.last_page | 385 |
| biblio.first_page | 381 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11636 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9932000041007996 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2718 |
| topics[1].subfield.display_name | Health Informatics |
| topics[1].display_name | Artificial Intelligence in Healthcare and Education |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9833999872207642 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| funders[0].id | https://openalex.org/F4320338440 |
| funders[0].ror | |
| funders[0].display_name | HORIZON EUROPE Health |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79974875 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8056119084358215 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[0].display_name | Cloud computing |
| concepts[1].id | https://openalex.org/C46934059 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7219944000244141 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q61515 |
| concepts[1].display_name | Outsourcing |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.680611252784729 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6454270482063293 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C123201435 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5172263383865356 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q456632 |
| concepts[4].display_name | Information privacy |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41377416253089905 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C38652104 |
| concepts[6].level | 1 |
| concepts[6].score | 0.29243385791778564 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[6].display_name | Computer security |
| concepts[7].id | https://openalex.org/C144133560 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1648637354373932 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[7].display_name | Business |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08192366361618042 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| concepts[9].id | https://openalex.org/C162853370 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[9].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/cloud-computing |
| keywords[0].score | 0.8056119084358215 |
| keywords[0].display_name | Cloud computing |
| keywords[1].id | https://openalex.org/keywords/outsourcing |
| keywords[1].score | 0.7219944000244141 |
| keywords[1].display_name | Outsourcing |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.680611252784729 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6454270482063293 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/information-privacy |
| keywords[4].score | 0.5172263383865356 |
| keywords[4].display_name | Information privacy |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.41377416253089905 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/computer-security |
| keywords[6].score | 0.29243385791778564 |
| keywords[6].display_name | Computer security |
| keywords[7].id | https://openalex.org/keywords/business |
| keywords[7].score | 0.1648637354373932 |
| keywords[7].display_name | Business |
| keywords[8].id | https://openalex.org/keywords/operating-system |
| keywords[8].score | 0.08192366361618042 |
| keywords[8].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.1109/ictai52525.2021.00062 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363608052 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI) |
| locations[0].landing_page_url | https://doi.org/10.1109/ictai52525.2021.00062 |
| locations[1].id | pmid:35095256 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | International Conference on Tools with Artificial Intelligence : [proceedings]. International Conference on Tools for Artificial Intelligence |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35095256 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:8796752 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Proc Int Conf Tools Artif Intell TAI |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8796752 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5029447247 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1040-5779 |
| authorships[0].author.display_name | Dimitrios Melissourgos |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Florida, Gainesville, FL, USA |
| authorships[0].institutions[0].id | https://openalex.org/I33213144 |
| authorships[0].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Florida |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dimitrios Melissourgos |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Florida, Gainesville, FL, USA |
| authorships[1].author.id | https://openalex.org/A5110828916 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hanzhi Gao |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Florida, Gainesville, FL, USA |
| authorships[1].institutions[0].id | https://openalex.org/I33213144 |
| authorships[1].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Florida |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hanzhi Gao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Florida, Gainesville, FL, USA |
| authorships[2].author.id | https://openalex.org/A5074529126 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3572-0046 |
| authorships[2].author.display_name | Chaoyi Ma |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Florida, Gainesville, FL, USA |
| authorships[2].institutions[0].id | https://openalex.org/I33213144 |
| authorships[2].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Florida |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chaoyi Ma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Florida, Gainesville, FL, USA |
| authorships[3].author.id | https://openalex.org/A5006184530 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7867-7765 |
| authorships[3].author.display_name | Shigang Chen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Florida, Gainesville, FL, USA |
| authorships[3].institutions[0].id | https://openalex.org/I33213144 |
| authorships[3].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Florida |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shigang Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Florida, Gainesville, FL, USA |
| authorships[4].author.id | https://openalex.org/A5101531627 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2684-436X |
| authorships[4].author.display_name | Samuel S. Wu |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Florida, Gainesville, FL, USA |
| authorships[4].institutions[0].id | https://openalex.org/I33213144 |
| authorships[4].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Florida |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Samuel S. Wu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Florida, Gainesville, FL, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8796752 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On Outsourcing Artificial Neural Network Learning of Privacy-Sensitive Medical Data to the Cloud |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W2358200898, https://openalex.org/W4231184955, https://openalex.org/W2325765407, https://openalex.org/W2788012436, https://openalex.org/W618293728, https://openalex.org/W2291845669, https://openalex.org/W200604156, https://openalex.org/W2374784346, https://openalex.org/W4286615217, https://openalex.org/W3125032676 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:8796752 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Proc Int Conf Tools Artif Intell TAI |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8796752 |
| primary_location.id | doi:10.1109/ictai52525.2021.00062 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363608052 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI) |
| primary_location.landing_page_url | https://doi.org/10.1109/ictai52525.2021.00062 |
| publication_date | 2021-11-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6752029299, https://openalex.org/W2535838896, https://openalex.org/W3037235638, https://openalex.org/W3021654819, https://openalex.org/W6771536673, https://openalex.org/W6759226220, https://openalex.org/W2344912502, https://openalex.org/W2924179447, https://openalex.org/W2031738616, https://openalex.org/W2435473771, https://openalex.org/W6605489568, https://openalex.org/W2681571577, https://openalex.org/W2810818034, https://openalex.org/W6746138031, https://openalex.org/W6732586565, https://openalex.org/W2736079347, https://openalex.org/W2916048747, https://openalex.org/W2734611429, https://openalex.org/W2963466845, https://openalex.org/W2337324142, https://openalex.org/W2664267452, https://openalex.org/W7043358474, https://openalex.org/W1992292681, https://openalex.org/W2908412011, https://openalex.org/W2980542546, https://openalex.org/W2400180537, https://openalex.org/W2977373448, https://openalex.org/W2775108449, https://openalex.org/W2072719872, https://openalex.org/W2889746123, https://openalex.org/W1975118429, https://openalex.org/W2292847939, https://openalex.org/W2599837602, https://openalex.org/W4200188535, https://openalex.org/W2585580772, https://openalex.org/W2055875549, https://openalex.org/W133884053, https://openalex.org/W2023895224, https://openalex.org/W4297687186, https://openalex.org/W2035569485, https://openalex.org/W2807006176, https://openalex.org/W3023079706, https://openalex.org/W3092100795, https://openalex.org/W3038028469, https://openalex.org/W2768347741, https://openalex.org/W3088097040, https://openalex.org/W4294106961 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 50, 64, 146 |
| abstract_inverted_index.In | 117 |
| abstract_inverted_index.It | 20, 132 |
| abstract_inverted_index.as | 161 |
| abstract_inverted_index.at | 9 |
| abstract_inverted_index.be | 168 |
| abstract_inverted_index.in | 15, 44, 101, 115, 145 |
| abstract_inverted_index.is | 21, 36, 42, 49, 110, 202 |
| abstract_inverted_index.it | 41 |
| abstract_inverted_index.of | 12, 33, 62, 105, 129, 183, 194, 206 |
| abstract_inverted_index.on | 178 |
| abstract_inverted_index.or | 112 |
| abstract_inverted_index.to | 53, 88, 99, 122, 137, 142, 154, 158, 204 |
| abstract_inverted_index.we | 120 |
| abstract_inverted_index.ANN | 165 |
| abstract_inverted_index.Our | 175 |
| abstract_inverted_index.and | 2, 30, 82, 149, 186 |
| abstract_inverted_index.big | 28 |
| abstract_inverted_index.can | 167 |
| abstract_inverted_index.few | 18 |
| abstract_inverted_index.for | 126, 181 |
| abstract_inverted_index.the | 10, 16, 31, 34, 55, 60, 69, 95, 102, 106, 134, 143, 151, 159, 164, 172, 191, 195, 199, 207, 210 |
| abstract_inverted_index.use | 123 |
| abstract_inverted_index.ANN. | 67 |
| abstract_inverted_index.ANNs | 25 |
| abstract_inverted_index.been | 8, 86 |
| abstract_inverted_index.data | 29, 35, 57, 78, 97, 107, 135, 141, 152, 201 |
| abstract_inverted_index.deep | 156 |
| abstract_inverted_index.even | 113 |
| abstract_inverted_index.from | 27, 75, 171, 198, 209 |
| abstract_inverted_index.have | 7, 85 |
| abstract_inverted_index.last | 17 |
| abstract_inverted_index.more | 65 |
| abstract_inverted_index.need | 52 |
| abstract_inverted_index.show | 189 |
| abstract_inverted_index.that | 24, 40, 190, 205 |
| abstract_inverted_index.they | 93 |
| abstract_inverted_index.this | 90, 118 |
| abstract_inverted_index.well | 22 |
| abstract_inverted_index.with | 59 |
| abstract_inverted_index.There | 48 |
| abstract_inverted_index.bring | 54 |
| abstract_inverted_index.cloud | 144, 160 |
| abstract_inverted_index.data. | 131, 174, 213 |
| abstract_inverted_index.form, | 148 |
| abstract_inverted_index.known | 23 |
| abstract_inverted_index.often | 37 |
| abstract_inverted_index.users | 153 |
| abstract_inverted_index.well, | 162 |
| abstract_inverted_index.where | 163 |
| abstract_inverted_index.which | 109 |
| abstract_inverted_index.(ANNs) | 6 |
| abstract_inverted_index.allows | 133, 150 |
| abstract_inverted_index.masked | 147, 173, 200 |
| abstract_inverted_index.matrix | 124 |
| abstract_inverted_index.models | 166, 180, 196, 208 |
| abstract_inverted_index.neural | 4 |
| abstract_inverted_index.paper, | 119 |
| abstract_inverted_index.stored | 43 |
| abstract_inverted_index.users, | 108 |
| abstract_inverted_index.years. | 19 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.address | 89 |
| abstract_inverted_index.benefit | 26 |
| abstract_inverted_index.concern | 71 |
| abstract_inverted_index.disease | 185, 188 |
| abstract_inverted_index.freely. | 79 |
| abstract_inverted_index.masking | 125 |
| abstract_inverted_index.meaning | 39 |
| abstract_inverted_index.medical | 13, 73, 96, 140 |
| abstract_inverted_index.patient | 77, 130, 212 |
| abstract_inverted_index.privacy | 70, 127 |
| abstract_inverted_index.propose | 121 |
| abstract_inverted_index.purpose | 61 |
| abstract_inverted_index.require | 94 |
| abstract_inverted_index.results | 177 |
| abstract_inverted_index.sharing | 76 |
| abstract_inverted_index.similar | 203 |
| abstract_inverted_index.trained | 169, 197 |
| abstract_inverted_index.However, | 68, 92 |
| abstract_inverted_index.accuracy | 193 |
| abstract_inverted_index.accurate | 66 |
| abstract_inverted_index.computer | 46 |
| abstract_inverted_index.concern. | 91 |
| abstract_inverted_index.directly | 170 |
| abstract_inverted_index.learning | 1, 81, 157 |
| abstract_inverted_index.networks | 5 |
| abstract_inverted_index.original | 211 |
| abstract_inverted_index.prevents | 72 |
| abstract_inverted_index.proposed | 87 |
| abstract_inverted_index.research | 14 |
| abstract_inverted_index.systems. | 47 |
| abstract_inverted_index.together | 58 |
| abstract_inverted_index.training | 63 |
| abstract_inverted_index.Federated | 80 |
| abstract_inverted_index.diagnosis | 182, 192 |
| abstract_inverted_index.different | 45 |
| abstract_inverted_index.forefront | 11 |
| abstract_inverted_index.outsource | 138, 155 |
| abstract_inverted_index.practical | 51 |
| abstract_inverted_index.practice. | 116 |
| abstract_inverted_index.artificial | 3 |
| abstract_inverted_index.collection | 32 |
| abstract_inverted_index.collectors | 98, 136 |
| abstract_inverted_index.infeasible | 114 |
| abstract_inverted_index.institutes | 74 |
| abstract_inverted_index.protection | 128 |
| abstract_inverted_index.Alzheimer's | 184 |
| abstract_inverted_index.Parkinson's | 187 |
| abstract_inverted_index.computation | 84 |
| abstract_inverted_index.distributed | 56 |
| abstract_inverted_index.multi-party | 83 |
| abstract_inverted_index.participate | 100 |
| abstract_inverted_index.computations | 104 |
| abstract_inverted_index.experimental | 176 |
| abstract_inverted_index.inconvenient | 111 |
| abstract_inverted_index.deep-learning | 103, 179 |
| abstract_inverted_index.decentralized, | 38 |
| abstract_inverted_index.privacy-sensitive | 139 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.71046002 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |