On Prediction Properties of Kriging: Uniform Error Bounds and Robustness Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.7895756.v2
Kriging based on Gaussian random fields is widely used in reconstructing unknown functions. The kriging method has pointwise predictive distributions which are computationally simple. However, in many applications one would like to predict for a range of untried points simultaneously. In this work, we obtain some error bounds for the simple and universal kriging predictor under the uniform metric. It works for a scattered set of input points in an arbitrary dimension, and also covers the case where the covariance function of the Gaussian process is misspecified. These results lead to a better understanding of the rate of convergence of kriging under the Gaussian or the Matérn correlation functions, the relationship between space-filling designs and kriging models, and the robustness of the Matérn correlation functions. Supplementary materials for this article are available online.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.7895756.v2
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394211056
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394211056Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.7895756.v2Digital Object Identifier
- Title
-
On Prediction Properties of Kriging: Uniform Error Bounds and RobustnessWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Wenjia Wang, Rui Tuo, Changbao WuList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.7895756.v2Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.7895756.v2Direct OA link when available
- Concepts
-
Robustness (evolution), Kriging, Computer science, Mathematics, Mean squared prediction error, Algorithm, Applied mathematics, Statistics, Chemistry, Biochemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394211056 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.7895756.v2 |
| ids.doi | https://doi.org/10.6084/m9.figshare.7895756.v2 |
| ids.openalex | https://openalex.org/W4394211056 |
| fwci | |
| type | dataset |
| title | On Prediction Properties of Kriging: Uniform Error Bounds and Robustness |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10050 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.6830999851226807 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Multi-Criteria Decision Making |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63479239 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7958931922912598 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[0].display_name | Robustness (evolution) |
| concepts[1].id | https://openalex.org/C81692654 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7836169004440308 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[1].display_name | Kriging |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.45856228470802307 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.445008248090744 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C167085575 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4389975070953369 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6803654 |
| concepts[4].display_name | Mean squared prediction error |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4159734845161438 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C28826006 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3300067186355591 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[6].display_name | Applied mathematics |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3027952313423157 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.05274251103401184 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C55493867 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[9].display_name | Biochemistry |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/robustness |
| keywords[0].score | 0.7958931922912598 |
| keywords[0].display_name | Robustness (evolution) |
| keywords[1].id | https://openalex.org/keywords/kriging |
| keywords[1].score | 0.7836169004440308 |
| keywords[1].display_name | Kriging |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.45856228470802307 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.445008248090744 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/mean-squared-prediction-error |
| keywords[4].score | 0.4389975070953369 |
| keywords[4].display_name | Mean squared prediction error |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.4159734845161438 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/applied-mathematics |
| keywords[6].score | 0.3300067186355591 |
| keywords[6].display_name | Applied mathematics |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.3027952313423157 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/chemistry |
| keywords[8].score | 0.05274251103401184 |
| keywords[8].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.7895756.v2 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.7895756.v2 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5100655526 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9219-0494 |
| authorships[0].author.display_name | Wenjia Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenjia Wang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052368885 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Rui Tuo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rui Tuo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5045980590 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6122-4225 |
| authorships[2].author.display_name | Changbao Wu |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | C. F. Jeff Wu |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.7895756.v2 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On Prediction Properties of Kriging: Uniform Error Bounds and Robustness |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10050 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.6830999851226807 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Multi-Criteria Decision Making |
| related_works | https://openalex.org/W1968523686, https://openalex.org/W298893735, https://openalex.org/W2199291344, https://openalex.org/W2211316729, https://openalex.org/W2167342507, https://openalex.org/W4247222564, https://openalex.org/W4221140712, https://openalex.org/W3123323883, https://openalex.org/W2151794096, https://openalex.org/W3019504214 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.7895756.v2 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.7895756.v2 |
| primary_location.id | doi:10.6084/m9.figshare.7895756.v2 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.7895756.v2 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34, 62, 91 |
| abstract_inverted_index.In | 40 |
| abstract_inverted_index.It | 59 |
| abstract_inverted_index.an | 69 |
| abstract_inverted_index.in | 9, 25, 68 |
| abstract_inverted_index.is | 6, 85 |
| abstract_inverted_index.of | 36, 65, 81, 94, 97, 99, 120 |
| abstract_inverted_index.on | 2 |
| abstract_inverted_index.or | 104 |
| abstract_inverted_index.to | 31, 90 |
| abstract_inverted_index.we | 43 |
| abstract_inverted_index.The | 13 |
| abstract_inverted_index.and | 51, 72, 114, 117 |
| abstract_inverted_index.are | 21, 130 |
| abstract_inverted_index.for | 33, 48, 61, 127 |
| abstract_inverted_index.has | 16 |
| abstract_inverted_index.one | 28 |
| abstract_inverted_index.set | 64 |
| abstract_inverted_index.the | 49, 56, 75, 78, 82, 95, 102, 105, 109, 118, 121 |
| abstract_inverted_index.also | 73 |
| abstract_inverted_index.case | 76 |
| abstract_inverted_index.lead | 89 |
| abstract_inverted_index.like | 30 |
| abstract_inverted_index.many | 26 |
| abstract_inverted_index.rate | 96 |
| abstract_inverted_index.some | 45 |
| abstract_inverted_index.this | 41, 128 |
| abstract_inverted_index.used | 8 |
| abstract_inverted_index.These | 87 |
| abstract_inverted_index.based | 1 |
| abstract_inverted_index.error | 46 |
| abstract_inverted_index.input | 66 |
| abstract_inverted_index.range | 35 |
| abstract_inverted_index.under | 55, 101 |
| abstract_inverted_index.where | 77 |
| abstract_inverted_index.which | 20 |
| abstract_inverted_index.work, | 42 |
| abstract_inverted_index.works | 60 |
| abstract_inverted_index.would | 29 |
| abstract_inverted_index.better | 92 |
| abstract_inverted_index.bounds | 47 |
| abstract_inverted_index.covers | 74 |
| abstract_inverted_index.fields | 5 |
| abstract_inverted_index.method | 15 |
| abstract_inverted_index.obtain | 44 |
| abstract_inverted_index.points | 38, 67 |
| abstract_inverted_index.random | 4 |
| abstract_inverted_index.simple | 50 |
| abstract_inverted_index.widely | 7 |
| abstract_inverted_index.Kriging | 0 |
| abstract_inverted_index.Matérn | 106, 122 |
| abstract_inverted_index.article | 129 |
| abstract_inverted_index.between | 111 |
| abstract_inverted_index.designs | 113 |
| abstract_inverted_index.kriging | 14, 53, 100, 115 |
| abstract_inverted_index.metric. | 58 |
| abstract_inverted_index.models, | 116 |
| abstract_inverted_index.online. | 132 |
| abstract_inverted_index.predict | 32 |
| abstract_inverted_index.process | 84 |
| abstract_inverted_index.results | 88 |
| abstract_inverted_index.simple. | 23 |
| abstract_inverted_index.uniform | 57 |
| abstract_inverted_index.unknown | 11 |
| abstract_inverted_index.untried | 37 |
| abstract_inverted_index.Gaussian | 3, 83, 103 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.function | 80 |
| abstract_inverted_index.arbitrary | 70 |
| abstract_inverted_index.available | 131 |
| abstract_inverted_index.materials | 126 |
| abstract_inverted_index.pointwise | 17 |
| abstract_inverted_index.predictor | 54 |
| abstract_inverted_index.scattered | 63 |
| abstract_inverted_index.universal | 52 |
| abstract_inverted_index.covariance | 79 |
| abstract_inverted_index.dimension, | 71 |
| abstract_inverted_index.functions, | 108 |
| abstract_inverted_index.functions. | 12, 124 |
| abstract_inverted_index.predictive | 18 |
| abstract_inverted_index.robustness | 119 |
| abstract_inverted_index.convergence | 98 |
| abstract_inverted_index.correlation | 107, 123 |
| abstract_inverted_index.applications | 27 |
| abstract_inverted_index.relationship | 110 |
| abstract_inverted_index.Supplementary | 125 |
| abstract_inverted_index.distributions | 19 |
| abstract_inverted_index.misspecified. | 86 |
| abstract_inverted_index.space-filling | 112 |
| abstract_inverted_index.understanding | 93 |
| abstract_inverted_index.reconstructing | 10 |
| abstract_inverted_index.computationally | 22 |
| abstract_inverted_index.simultaneously. | 39 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |