On quantum methods for machine learning problems part II: Quantum classification algorithms Article Swipe
Farid Ablayev
,
Marat Ablayev
,
Joshua Zhexue Huang
,
Kamil Khadiev
,
Nailya Salikhova
,
Dingming Wu
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.26599/bdma.2019.9020018
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.26599/bdma.2019.9020018
This is a review of quantum methods for machine learning problems that consists of two parts. The first part, "quantum tools", presented some of the fundamentals and introduced several quantum tools based on known quantum search algorithms. This second part of the review presents several classification problems in machine learning that can be accelerated with quantum subroutines. We have chosen supervised learning tasks as typical classification problems to illustrate the use of quantum methods for classification.
Related Topics
Concepts
Quantum machine learning
Quantum
Computer science
Quantum algorithm
Algorithm
Machine learning
Artificial intelligence
Physics
Quantum mechanics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26599/bdma.2019.9020018
- https://ieeexplore.ieee.org/ielx7/8254253/8935088/08935095.pdf
- OA Status
- diamond
- Cited By
- 32
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2995899117
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2995899117Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26599/bdma.2019.9020018Digital Object Identifier
- Title
-
On quantum methods for machine learning problems part II: Quantum classification algorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-19Full publication date if available
- Authors
-
Farid Ablayev, Marat Ablayev, Joshua Zhexue Huang, Kamil Khadiev, Nailya Salikhova, Dingming WuList of authors in order
- Landing page
-
https://doi.org/10.26599/bdma.2019.9020018Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/8254253/8935088/08935095.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/8254253/8935088/08935095.pdfDirect OA link when available
- Concepts
-
Quantum machine learning, Quantum, Computer science, Quantum algorithm, Algorithm, Machine learning, Artificial intelligence, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
32Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 7, 2023: 9, 2022: 4, 2021: 7Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2995899117 |
|---|---|
| doi | https://doi.org/10.26599/bdma.2019.9020018 |
| ids.doi | https://doi.org/10.26599/bdma.2019.9020018 |
| ids.mag | 2995899117 |
| ids.openalex | https://openalex.org/W2995899117 |
| fwci | 1.6897952 |
| type | article |
| title | On quantum methods for machine learning problems part II: Quantum classification algorithms |
| biblio.issue | 1 |
| biblio.volume | 3 |
| biblio.last_page | 67 |
| biblio.first_page | 56 |
| topics[0].id | https://openalex.org/T10682 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Quantum Computing Algorithms and Architecture |
| topics[1].id | https://openalex.org/T10020 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9933000206947327 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Quantum Information and Cryptography |
| topics[2].id | https://openalex.org/T10622 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9323999881744385 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3107 |
| topics[2].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[2].display_name | Quantum Mechanics and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779094486 |
| concepts[0].level | 4 |
| concepts[0].score | 0.6708189249038696 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18811578 |
| concepts[0].display_name | Quantum machine learning |
| concepts[1].id | https://openalex.org/C84114770 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5834261178970337 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[1].display_name | Quantum |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5681060552597046 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C137019171 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4974541962146759 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2623817 |
| concepts[3].display_name | Quantum algorithm |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4618837237358093 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41137802600860596 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.40604591369628906 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.16889643669128418 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C62520636 |
| concepts[8].level | 1 |
| concepts[8].score | 0.12965574860572815 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[8].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/quantum-machine-learning |
| keywords[0].score | 0.6708189249038696 |
| keywords[0].display_name | Quantum machine learning |
| keywords[1].id | https://openalex.org/keywords/quantum |
| keywords[1].score | 0.5834261178970337 |
| keywords[1].display_name | Quantum |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5681060552597046 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/quantum-algorithm |
| keywords[3].score | 0.4974541962146759 |
| keywords[3].display_name | Quantum algorithm |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.4618837237358093 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.41137802600860596 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.40604591369628906 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.16889643669128418 |
| keywords[7].display_name | Physics |
| keywords[8].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[8].score | 0.12965574860572815 |
| keywords[8].display_name | Quantum mechanics |
| language | en |
| locations[0].id | doi:10.26599/bdma.2019.9020018 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210209060 |
| locations[0].source.issn | 2096-0654 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2096-0654 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Big Data Mining and Analytics |
| locations[0].source.host_organization | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_name | Tsinghua University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_lineage_names | Tsinghua University Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/8254253/8935088/08935095.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Big Data Mining and Analytics |
| locations[0].landing_page_url | https://doi.org/10.26599/bdma.2019.9020018 |
| locations[1].id | pmh:oai:doaj.org/article:f054b0272ae94394baf7cc0ea4245339 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Big Data Mining and Analytics, Vol 3, Iss 1, Pp 56-67 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/f054b0272ae94394baf7cc0ea4245339 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5009862855 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5592-3211 |
| authorships[0].author.display_name | Farid Ablayev |
| authorships[0].countries | RU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21203515 |
| authorships[0].affiliations[0].raw_affiliation_string | Kazan Federal University, Kazan 42008, Russia |
| authorships[0].institutions[0].id | https://openalex.org/I21203515 |
| authorships[0].institutions[0].ror | https://ror.org/05256ym39 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21203515 |
| authorships[0].institutions[0].country_code | RU |
| authorships[0].institutions[0].display_name | Kazan Federal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Farid Ablayev |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Kazan Federal University, Kazan 42008, Russia |
| authorships[1].author.id | https://openalex.org/A5058540887 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3164-2850 |
| authorships[1].author.display_name | Marat Ablayev |
| authorships[1].countries | RU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21203515 |
| authorships[1].affiliations[0].raw_affiliation_string | Kazan Federal University, Kazan 42008, Russia |
| authorships[1].institutions[0].id | https://openalex.org/I21203515 |
| authorships[1].institutions[0].ror | https://ror.org/05256ym39 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21203515 |
| authorships[1].institutions[0].country_code | RU |
| authorships[1].institutions[0].display_name | Kazan Federal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Marat Ablayev |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Kazan Federal University, Kazan 42008, Russia |
| authorships[2].author.id | https://openalex.org/A5003347359 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6797-2571 |
| authorships[2].author.display_name | Joshua Zhexue Huang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science & Software Engineering, Shenzhen University, Shenzhen 518000, China |
| authorships[2].institutions[0].id | https://openalex.org/I180726961 |
| authorships[2].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenzhen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joshua Zhexue Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science & Software Engineering, Shenzhen University, Shenzhen 518000, China |
| authorships[3].author.id | https://openalex.org/A5032918115 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5151-9908 |
| authorships[3].author.display_name | Kamil Khadiev |
| authorships[3].countries | RU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21203515 |
| authorships[3].affiliations[0].raw_affiliation_string | Kazan Federal University, Kazan 42008, Russia |
| authorships[3].institutions[0].id | https://openalex.org/I21203515 |
| authorships[3].institutions[0].ror | https://ror.org/05256ym39 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21203515 |
| authorships[3].institutions[0].country_code | RU |
| authorships[3].institutions[0].display_name | Kazan Federal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kamil Khadiev |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Kazan Federal University, Kazan 42008, Russia |
| authorships[4].author.id | https://openalex.org/A5035363002 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Nailya Salikhova |
| authorships[4].countries | RU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I21203515 |
| authorships[4].affiliations[0].raw_affiliation_string | Kazan Federal University, Kazan 42008, Russia |
| authorships[4].institutions[0].id | https://openalex.org/I21203515 |
| authorships[4].institutions[0].ror | https://ror.org/05256ym39 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I21203515 |
| authorships[4].institutions[0].country_code | RU |
| authorships[4].institutions[0].display_name | Kazan Federal University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nailya Salikhova |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Kazan Federal University, Kazan 42008, Russia |
| authorships[5].author.id | https://openalex.org/A5102013176 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7901-9876 |
| authorships[5].author.display_name | Dingming Wu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Computer Science & Software Engineering, Shenzhen University, Shenzhen 518000, China |
| authorships[5].institutions[0].id | https://openalex.org/I180726961 |
| authorships[5].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shenzhen University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Dingming Wu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Computer Science & Software Engineering, Shenzhen University, Shenzhen 518000, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/8254253/8935088/08935095.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On quantum methods for machine learning problems part II: Quantum classification algorithms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10682 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Quantum Computing Algorithms and Architecture |
| related_works | https://openalex.org/W4289534122, https://openalex.org/W4285326889, https://openalex.org/W4353086852, https://openalex.org/W4312288010, https://openalex.org/W4382240995, https://openalex.org/W2906136444, https://openalex.org/W4298182858, https://openalex.org/W4362682022, https://openalex.org/W4226152172, https://openalex.org/W4294612786 |
| cited_by_count | 32 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 7 |
| locations_count | 2 |
| best_oa_location.id | doi:10.26599/bdma.2019.9020018 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210209060 |
| best_oa_location.source.issn | 2096-0654 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2096-0654 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Big Data Mining and Analytics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_name | Tsinghua University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_lineage_names | Tsinghua University Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/8254253/8935088/08935095.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Big Data Mining and Analytics |
| best_oa_location.landing_page_url | https://doi.org/10.26599/bdma.2019.9020018 |
| primary_location.id | doi:10.26599/bdma.2019.9020018 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210209060 |
| primary_location.source.issn | 2096-0654 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2096-0654 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Big Data Mining and Analytics |
| primary_location.source.host_organization | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_name | Tsinghua University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_lineage_names | Tsinghua University Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/8254253/8935088/08935095.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Big Data Mining and Analytics |
| primary_location.landing_page_url | https://doi.org/10.26599/bdma.2019.9020018 |
| publication_date | 2019-12-19 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W6632983741, https://openalex.org/W6638505813, https://openalex.org/W4239510810, https://openalex.org/W2088171019, https://openalex.org/W2142537581, https://openalex.org/W2962954040, https://openalex.org/W2101403221, https://openalex.org/W2122111042, https://openalex.org/W2061422883, https://openalex.org/W2103956991, https://openalex.org/W2040870580, https://openalex.org/W2153887174, https://openalex.org/W2951663210, https://openalex.org/W2084652510, https://openalex.org/W2953169971, https://openalex.org/W2749353276 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 2 |
| abstract_inverted_index.We | 57 |
| abstract_inverted_index.as | 63 |
| abstract_inverted_index.be | 52 |
| abstract_inverted_index.in | 47 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.of | 4, 13, 23, 40, 71 |
| abstract_inverted_index.on | 32 |
| abstract_inverted_index.to | 67 |
| abstract_inverted_index.The | 16 |
| abstract_inverted_index.and | 26 |
| abstract_inverted_index.can | 51 |
| abstract_inverted_index.for | 7, 74 |
| abstract_inverted_index.the | 24, 41, 69 |
| abstract_inverted_index.two | 14 |
| abstract_inverted_index.use | 70 |
| abstract_inverted_index.This | 0, 37 |
| abstract_inverted_index.have | 58 |
| abstract_inverted_index.part | 39 |
| abstract_inverted_index.some | 22 |
| abstract_inverted_index.that | 11, 50 |
| abstract_inverted_index.with | 54 |
| abstract_inverted_index.based | 31 |
| abstract_inverted_index.first | 17 |
| abstract_inverted_index.known | 33 |
| abstract_inverted_index.part, | 18 |
| abstract_inverted_index.tasks | 62 |
| abstract_inverted_index.tools | 30 |
| abstract_inverted_index.chosen | 59 |
| abstract_inverted_index.parts. | 15 |
| abstract_inverted_index.review | 3, 42 |
| abstract_inverted_index.search | 35 |
| abstract_inverted_index.second | 38 |
| abstract_inverted_index.machine | 8, 48 |
| abstract_inverted_index.methods | 6, 73 |
| abstract_inverted_index.quantum | 5, 29, 34, 55, 72 |
| abstract_inverted_index.several | 28, 44 |
| abstract_inverted_index.tools", | 20 |
| abstract_inverted_index.typical | 64 |
| abstract_inverted_index."quantum | 19 |
| abstract_inverted_index.consists | 12 |
| abstract_inverted_index.learning | 9, 49, 61 |
| abstract_inverted_index.presents | 43 |
| abstract_inverted_index.problems | 10, 46, 66 |
| abstract_inverted_index.presented | 21 |
| abstract_inverted_index.illustrate | 68 |
| abstract_inverted_index.introduced | 27 |
| abstract_inverted_index.supervised | 60 |
| abstract_inverted_index.accelerated | 53 |
| abstract_inverted_index.algorithms. | 36 |
| abstract_inverted_index.fundamentals | 25 |
| abstract_inverted_index.subroutines. | 56 |
| abstract_inverted_index.classification | 45, 65 |
| abstract_inverted_index.classification. | 75 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.88058849 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |