On quasi-polynomials counting planar tight maps Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5070/c64163849
A tight map is a map with some of its vertices marked, such that every vertex of degree \\(1\\) is marked. We give an explicit formula for the number \\(N_{0,n}(d_1,\\ldots,d_n)\\) of planar tight maps with \\(n\\) labeled faces of prescribed degrees \\(d_1,\\ldots,d_n\\), where a marked vertex is seen as a face of degree \\(0\\). It is a quasi-polynomial in \\((d_1,\\ldots,d_n)\\), as shown previously by Norbury. Our derivation is bijective and based on the slice decomposition of planar maps. In the non-bipartite case, we also rely on enumeration results for two-type forests. We discuss the connection with the enumeration of non necessarily tight maps. In particular, we provide a generalization of Tutte's classical slicings formula to all non-bipartite maps.Mathematics Subject Classifications: 05A15, 05A19Keywords: Planar maps, bijective enumeration, slice decomposition
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5070/c64163849
- https://escholarship.org/content/qt9h946160/qt9h946160.pdf?t=sfxprn
- OA Status
- diamond
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400196727
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400196727Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5070/c64163849Digital Object Identifier
- Title
-
On quasi-polynomials counting planar tight mapsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-01Full publication date if available
- Authors
-
Jérémie Bouttier, Emmanuel Guitter, Grégory MiermontList of authors in order
- Landing page
-
https://doi.org/10.5070/c64163849Publisher landing page
- PDF URL
-
https://escholarship.org/content/qt9h946160/qt9h946160.pdf?t=sfxprnDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://escholarship.org/content/qt9h946160/qt9h946160.pdf?t=sfxprnDirect OA link when available
- Concepts
-
Planar, Mathematics, Combinatorics, Computer science, Computer graphics (images)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400196727 |
|---|---|
| doi | https://doi.org/10.5070/c64163849 |
| ids.doi | https://doi.org/10.5070/c64163849 |
| ids.openalex | https://openalex.org/W4400196727 |
| fwci | 0.0 |
| type | article |
| title | On quasi-polynomials counting planar tight maps |
| biblio.issue | 1 |
| biblio.volume | 4 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10588 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Mathematical Dynamics and Fractals |
| topics[1].id | https://openalex.org/T10948 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2607 |
| topics[1].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[1].display_name | Advanced Combinatorial Mathematics |
| topics[2].id | https://openalex.org/T11673 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9968000054359436 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2602 |
| topics[2].subfield.display_name | Algebra and Number Theory |
| topics[2].display_name | Advanced Topics in Algebra |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C134786449 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6535958051681519 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3391255 |
| concepts[0].display_name | Planar |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5305067896842957 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C114614502 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4182998239994049 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[2].display_name | Combinatorics |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.25794464349746704 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C121684516 |
| concepts[4].level | 1 |
| concepts[4].score | 0.13755914568901062 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[4].display_name | Computer graphics (images) |
| keywords[0].id | https://openalex.org/keywords/planar |
| keywords[0].score | 0.6535958051681519 |
| keywords[0].display_name | Planar |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.5305067896842957 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/combinatorics |
| keywords[2].score | 0.4182998239994049 |
| keywords[2].display_name | Combinatorics |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.25794464349746704 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/computer-graphics |
| keywords[4].score | 0.13755914568901062 |
| keywords[4].display_name | Computer graphics (images) |
| language | en |
| locations[0].id | doi:10.5070/c64163849 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210174179 |
| locations[0].source.issn | 2766-1334 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2766-1334 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Combinatorial Theory |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://escholarship.org/content/qt9h946160/qt9h946160.pdf?t=sfxprn |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Combinatorial Theory |
| locations[0].landing_page_url | https://doi.org/10.5070/c64163849 |
| locations[1].id | pmh:oai:escholarship.org:ark:/13030/qt9h946160 |
| locations[1].is_oa | True |
| locations[1].source | |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Combinatorial Theory, vol 4, iss 1 |
| locations[1].landing_page_url | https://escholarship.org/uc/item/9h946160 |
| locations[2].id | pmh:oai:HAL:hal-03622398v2 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402512 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[2].source.host_organization | https://openalex.org/I1294671590 |
| locations[2].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[2].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Journal articles |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Combinatorial Theory, 2024, 4 (1), pp.#12. ⟨10.5070/C64163849⟩ |
| locations[2].landing_page_url | https://hal.science/hal-03622398 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5080082247 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3852-155X |
| authorships[0].author.display_name | Jérémie Bouttier |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204730241, https://openalex.org/I3017942884, https://openalex.org/I39804081 |
| authorships[0].affiliations[0].raw_affiliation_string | IMJ-PRG (UMR_7586) - Institut de Mathématiques de Jussieu - Paris Rive Gauche (Sorbonne Université - IMJ - Case 247 - 4 place Jussieu 75252 Paris cedex 05 / Université Paris Diderot - Bât. Sophie Germain, case 7012 - France) |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I2738703131, https://openalex.org/I4210128565, https://openalex.org/I4210163633 |
| authorships[0].affiliations[1].raw_affiliation_string | IPHT - Institut de Physique Théorique - UMR CNRS 3681 (Institut de Physique Théorique Orme des Merisiers batiment 774 Point courrier 136 CEA/DSM/IPhT CEA/Saclay F-91191 Gif-sur-Yvette Cedex - France) |
| authorships[0].institutions[0].id | https://openalex.org/I4210128565 |
| authorships[0].institutions[0].ror | https://ror.org/03n15ch10 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I2738703131, https://openalex.org/I277688954, https://openalex.org/I4210128565 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | CEA Paris-Saclay |
| authorships[0].institutions[1].id | https://openalex.org/I1294671590 |
| authorships[0].institutions[1].ror | https://ror.org/02feahw73 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I1294671590 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Centre National de la Recherche Scientifique |
| authorships[0].institutions[2].id | https://openalex.org/I2738703131 |
| authorships[0].institutions[2].ror | https://ror.org/00jjx8s55 |
| authorships[0].institutions[2].type | government |
| authorships[0].institutions[2].lineage | https://openalex.org/I2738703131 |
| authorships[0].institutions[2].country_code | FR |
| authorships[0].institutions[2].display_name | Commissariat à l'Énergie Atomique et aux Énergies Alternatives |
| authorships[0].institutions[3].id | https://openalex.org/I3017942884 |
| authorships[0].institutions[3].ror | https://ror.org/03fk87k11 |
| authorships[0].institutions[3].type | facility |
| authorships[0].institutions[3].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I204730241, https://openalex.org/I3017942884, https://openalex.org/I39804081, https://openalex.org/I4210141950 |
| authorships[0].institutions[3].country_code | FR |
| authorships[0].institutions[3].display_name | Institut de Mathématiques de Jussieu-Paris Rive Gauche |
| authorships[0].institutions[4].id | https://openalex.org/I4210163633 |
| authorships[0].institutions[4].ror | https://ror.org/058rvd314 |
| authorships[0].institutions[4].type | facility |
| authorships[0].institutions[4].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I2738703131, https://openalex.org/I4210098836, https://openalex.org/I4210113668, https://openalex.org/I4210163633 |
| authorships[0].institutions[4].country_code | FR |
| authorships[0].institutions[4].display_name | Institut de Physique Théorique |
| authorships[0].institutions[5].id | https://openalex.org/I39804081 |
| authorships[0].institutions[5].ror | https://ror.org/02en5vm52 |
| authorships[0].institutions[5].type | education |
| authorships[0].institutions[5].lineage | https://openalex.org/I39804081 |
| authorships[0].institutions[5].country_code | FR |
| authorships[0].institutions[5].display_name | Sorbonne Université |
| authorships[0].institutions[6].id | https://openalex.org/I204730241 |
| authorships[0].institutions[6].ror | https://ror.org/05f82e368 |
| authorships[0].institutions[6].type | education |
| authorships[0].institutions[6].lineage | https://openalex.org/I204730241 |
| authorships[0].institutions[6].country_code | FR |
| authorships[0].institutions[6].display_name | Université Paris Cité |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jérémie Bouttier |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | IMJ-PRG (UMR_7586) - Institut de Mathématiques de Jussieu - Paris Rive Gauche (Sorbonne Université - IMJ - Case 247 - 4 place Jussieu 75252 Paris cedex 05 / Université Paris Diderot - Bât. Sophie Germain, case 7012 - France), IPHT - Institut de Physique Théorique - UMR CNRS 3681 (Institut de Physique Théorique Orme des Merisiers batiment 774 Point courrier 136 CEA/DSM/IPhT CEA/Saclay F-91191 Gif-sur-Yvette Cedex - France) |
| authorships[1].author.id | https://openalex.org/A5055644587 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1447-5886 |
| authorships[1].author.display_name | Emmanuel Guitter |
| authorships[1].countries | FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I2738703131, https://openalex.org/I4210128565, https://openalex.org/I4210163633 |
| authorships[1].affiliations[0].raw_affiliation_string | IPHT - Institut de Physique Théorique - UMR CNRS 3681 (Institut de Physique Théorique Orme des Merisiers batiment 774 Point courrier 136 CEA/DSM/IPhT CEA/Saclay F-91191 Gif-sur-Yvette Cedex - France) |
| authorships[1].institutions[0].id | https://openalex.org/I4210128565 |
| authorships[1].institutions[0].ror | https://ror.org/03n15ch10 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I2738703131, https://openalex.org/I277688954, https://openalex.org/I4210128565 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | CEA Paris-Saclay |
| authorships[1].institutions[1].id | https://openalex.org/I1294671590 |
| authorships[1].institutions[1].ror | https://ror.org/02feahw73 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I1294671590 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | Centre National de la Recherche Scientifique |
| authorships[1].institutions[2].id | https://openalex.org/I2738703131 |
| authorships[1].institutions[2].ror | https://ror.org/00jjx8s55 |
| authorships[1].institutions[2].type | government |
| authorships[1].institutions[2].lineage | https://openalex.org/I2738703131 |
| authorships[1].institutions[2].country_code | FR |
| authorships[1].institutions[2].display_name | Commissariat à l'Énergie Atomique et aux Énergies Alternatives |
| authorships[1].institutions[3].id | https://openalex.org/I4210163633 |
| authorships[1].institutions[3].ror | https://ror.org/058rvd314 |
| authorships[1].institutions[3].type | facility |
| authorships[1].institutions[3].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I2738703131, https://openalex.org/I4210098836, https://openalex.org/I4210113668, https://openalex.org/I4210163633 |
| authorships[1].institutions[3].country_code | FR |
| authorships[1].institutions[3].display_name | Institut de Physique Théorique |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Emmanuel Guitter |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IPHT - Institut de Physique Théorique - UMR CNRS 3681 (Institut de Physique Théorique Orme des Merisiers batiment 774 Point courrier 136 CEA/DSM/IPhT CEA/Saclay F-91191 Gif-sur-Yvette Cedex - France) |
| authorships[2].author.id | https://openalex.org/A5061258160 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8536-2796 |
| authorships[2].author.display_name | Grégory Miermont |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210160577 |
| authorships[2].affiliations[0].raw_affiliation_string | UMPA-ENSL - Unité de Mathématiques Pures et Appliquées (France) |
| authorships[2].institutions[0].id | https://openalex.org/I4210160577 |
| authorships[2].institutions[0].ror | https://ror.org/05n21n105 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I113428412, https://openalex.org/I1294671590, https://openalex.org/I203339264, https://openalex.org/I4210160577 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Unité de Mathématiques Pures et Appliquées |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Grégory Miermont |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | UMPA-ENSL - Unité de Mathématiques Pures et Appliquées (France) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://escholarship.org/content/qt9h946160/qt9h946160.pdf?t=sfxprn |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On quasi-polynomials counting planar tight maps |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10588 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Mathematical Dynamics and Fractals |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793, https://openalex.org/W4238204885 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.5070/c64163849 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210174179 |
| best_oa_location.source.issn | 2766-1334 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2766-1334 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Combinatorial Theory |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://escholarship.org/content/qt9h946160/qt9h946160.pdf?t=sfxprn |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Combinatorial Theory |
| best_oa_location.landing_page_url | https://doi.org/10.5070/c64163849 |
| primary_location.id | doi:10.5070/c64163849 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210174179 |
| primary_location.source.issn | 2766-1334 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2766-1334 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Combinatorial Theory |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://escholarship.org/content/qt9h946160/qt9h946160.pdf?t=sfxprn |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Combinatorial Theory |
| primary_location.landing_page_url | https://doi.org/10.5070/c64163849 |
| publication_date | 2024-07-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3041597759, https://openalex.org/W3104703509, https://openalex.org/W1993114066, https://openalex.org/W3152803879, https://openalex.org/W2142949475, https://openalex.org/W3117798398, https://openalex.org/W3037392287, https://openalex.org/W2057266558, https://openalex.org/W1962027554, https://openalex.org/W2167929644, https://openalex.org/W1997713922, https://openalex.org/W2006442667, https://openalex.org/W186403072, https://openalex.org/W1585244820, https://openalex.org/W3098932440, https://openalex.org/W3204062795, https://openalex.org/W2118998907, https://openalex.org/W1551177513, https://openalex.org/W2042456974, https://openalex.org/W2994857158, https://openalex.org/W2078463495, https://openalex.org/W3103616215, https://openalex.org/W2086284603, https://openalex.org/W2152585937, https://openalex.org/W3106242067, https://openalex.org/W1972563066 |
| referenced_works_count | 26 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 4, 43, 49, 56, 107 |
| abstract_inverted_index.In | 78, 103 |
| abstract_inverted_index.It | 54 |
| abstract_inverted_index.We | 21, 91 |
| abstract_inverted_index.an | 23 |
| abstract_inverted_index.as | 48, 60 |
| abstract_inverted_index.by | 63 |
| abstract_inverted_index.in | 58 |
| abstract_inverted_index.is | 3, 19, 46, 55, 67 |
| abstract_inverted_index.of | 8, 16, 30, 38, 51, 75, 98, 109 |
| abstract_inverted_index.on | 71, 85 |
| abstract_inverted_index.to | 114 |
| abstract_inverted_index.we | 82, 105 |
| abstract_inverted_index.Our | 65 |
| abstract_inverted_index.all | 115 |
| abstract_inverted_index.and | 69 |
| abstract_inverted_index.for | 26, 88 |
| abstract_inverted_index.its | 9 |
| abstract_inverted_index.map | 2, 5 |
| abstract_inverted_index.non | 99 |
| abstract_inverted_index.the | 27, 72, 79, 93, 96 |
| abstract_inverted_index.also | 83 |
| abstract_inverted_index.face | 50 |
| abstract_inverted_index.give | 22 |
| abstract_inverted_index.maps | 33 |
| abstract_inverted_index.rely | 84 |
| abstract_inverted_index.seen | 47 |
| abstract_inverted_index.some | 7 |
| abstract_inverted_index.such | 12 |
| abstract_inverted_index.that | 13 |
| abstract_inverted_index.with | 6, 34, 95 |
| abstract_inverted_index.based | 70 |
| abstract_inverted_index.case, | 81 |
| abstract_inverted_index.every | 14 |
| abstract_inverted_index.faces | 37 |
| abstract_inverted_index.maps, | 123 |
| abstract_inverted_index.maps. | 77, 102 |
| abstract_inverted_index.shown | 61 |
| abstract_inverted_index.slice | 73, 126 |
| abstract_inverted_index.tight | 1, 32, 101 |
| abstract_inverted_index.where | 42 |
| abstract_inverted_index.05A15, | 120 |
| abstract_inverted_index.Planar | 122 |
| abstract_inverted_index.degree | 17, 52 |
| abstract_inverted_index.marked | 44 |
| abstract_inverted_index.number | 28 |
| abstract_inverted_index.planar | 31, 76 |
| abstract_inverted_index.vertex | 15, 45 |
| abstract_inverted_index.Subject | 118 |
| abstract_inverted_index.Tutte's | 110 |
| abstract_inverted_index.\\(1\\) | 18 |
| abstract_inverted_index.\\(n\\) | 35 |
| abstract_inverted_index.degrees | 40 |
| abstract_inverted_index.discuss | 92 |
| abstract_inverted_index.formula | 25, 113 |
| abstract_inverted_index.labeled | 36 |
| abstract_inverted_index.marked, | 11 |
| abstract_inverted_index.marked. | 20 |
| abstract_inverted_index.provide | 106 |
| abstract_inverted_index.results | 87 |
| abstract_inverted_index.Norbury. | 64 |
| abstract_inverted_index.\\(0\\). | 53 |
| abstract_inverted_index.explicit | 24 |
| abstract_inverted_index.forests. | 90 |
| abstract_inverted_index.slicings | 112 |
| abstract_inverted_index.two-type | 89 |
| abstract_inverted_index.vertices | 10 |
| abstract_inverted_index.bijective | 68, 124 |
| abstract_inverted_index.classical | 111 |
| abstract_inverted_index.connection | 94 |
| abstract_inverted_index.derivation | 66 |
| abstract_inverted_index.prescribed | 39 |
| abstract_inverted_index.previously | 62 |
| abstract_inverted_index.enumeration | 86, 97 |
| abstract_inverted_index.necessarily | 100 |
| abstract_inverted_index.particular, | 104 |
| abstract_inverted_index.enumeration, | 125 |
| abstract_inverted_index.decomposition | 74, 127 |
| abstract_inverted_index.non-bipartite | 80, 116 |
| abstract_inverted_index.05A19Keywords: | 121 |
| abstract_inverted_index.generalization | 108 |
| abstract_inverted_index.Classifications: | 119 |
| abstract_inverted_index.maps.Mathematics | 117 |
| abstract_inverted_index.quasi-polynomial | 57 |
| abstract_inverted_index.\\(d_1,\\ldots,d_n\\), | 41 |
| abstract_inverted_index.\\((d_1,\\ldots,d_n)\\), | 59 |
| abstract_inverted_index.\\(N_{0,n}(d_1,\\ldots,d_n)\\) | 29 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.22052345 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |