On sparse high-dimensional graphical model learning for dependent time series Article Swipe
Related Topics
Concepts
Lasso (programming language)
Conditional independence
Estimator
Series (stratigraphy)
Mathematics
Algorithm
Rate of convergence
Gaussian
Bayesian information criterion
Mathematical optimization
Applied mathematics
Computer science
Statistics
Biology
Computer network
Channel (broadcasting)
World Wide Web
Physics
Paleontology
Quantum mechanics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.sigpro.2022.108539
- OA Status
- green
- Cited By
- 12
- References
- 82
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3214414906
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3214414906Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.sigpro.2022.108539Digital Object Identifier
- Title
-
On sparse high-dimensional graphical model learning for dependent time seriesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-14Full publication date if available
- Authors
-
J.K. TugnaitList of authors in order
- Landing page
-
https://doi.org/10.1016/j.sigpro.2022.108539Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.07897Direct OA link when available
- Concepts
-
Lasso (programming language), Conditional independence, Estimator, Series (stratigraphy), Mathematics, Algorithm, Rate of convergence, Gaussian, Bayesian information criterion, Mathematical optimization, Applied mathematics, Computer science, Statistics, Biology, Computer network, Channel (broadcasting), World Wide Web, Physics, Paleontology, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 6, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
82Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3214414906 |
|---|---|
| doi | https://doi.org/10.1016/j.sigpro.2022.108539 |
| ids.doi | https://doi.org/10.1016/j.sigpro.2022.108539 |
| ids.mag | 3214414906 |
| ids.openalex | https://openalex.org/W3214414906 |
| fwci | 5.00928996 |
| type | article |
| title | On sparse high-dimensional graphical model learning for dependent time series |
| biblio.issue | |
| biblio.volume | 197 |
| biblio.last_page | 108539 |
| biblio.first_page | 108539 |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.995199978351593 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9901000261306763 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| topics[2].id | https://openalex.org/T11236 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9897000193595886 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Control Systems and Identification |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list.value | 3200 |
| apc_list.currency | USD |
| apc_list.value_usd | 3200 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37616216 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6416822671890259 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[0].display_name | Lasso (programming language) |
| concepts[1].id | https://openalex.org/C79772020 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5912646651268005 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5159264 |
| concepts[1].display_name | Conditional independence |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5716846585273743 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C143724316 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5453715324401855 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[3].display_name | Series (stratigraphy) |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5317056775093079 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5029577612876892 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C57869625 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4595867693424225 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1783502 |
| concepts[6].display_name | Rate of convergence |
| concepts[7].id | https://openalex.org/C163716315 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44405993819236755 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[7].display_name | Gaussian |
| concepts[8].id | https://openalex.org/C168136583 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41365155577659607 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1988242 |
| concepts[8].display_name | Bayesian information criterion |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35589599609375 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35051149129867554 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.33079516887664795 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.21956199407577515 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C31258907 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[14].display_name | Computer network |
| concepts[15].id | https://openalex.org/C127162648 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[15].display_name | Channel (broadcasting) |
| concepts[16].id | https://openalex.org/C136764020 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[16].display_name | World Wide Web |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C151730666 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[18].display_name | Paleontology |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/lasso |
| keywords[0].score | 0.6416822671890259 |
| keywords[0].display_name | Lasso (programming language) |
| keywords[1].id | https://openalex.org/keywords/conditional-independence |
| keywords[1].score | 0.5912646651268005 |
| keywords[1].display_name | Conditional independence |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.5716846585273743 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/series |
| keywords[3].score | 0.5453715324401855 |
| keywords[3].display_name | Series (stratigraphy) |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.5317056775093079 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.5029577612876892 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/rate-of-convergence |
| keywords[6].score | 0.4595867693424225 |
| keywords[6].display_name | Rate of convergence |
| keywords[7].id | https://openalex.org/keywords/gaussian |
| keywords[7].score | 0.44405993819236755 |
| keywords[7].display_name | Gaussian |
| keywords[8].id | https://openalex.org/keywords/bayesian-information-criterion |
| keywords[8].score | 0.41365155577659607 |
| keywords[8].display_name | Bayesian information criterion |
| keywords[9].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[9].score | 0.35589599609375 |
| keywords[9].display_name | Mathematical optimization |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.35051149129867554 |
| keywords[10].display_name | Applied mathematics |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.33079516887664795 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.21956199407577515 |
| keywords[12].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1016/j.sigpro.2022.108539 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S154637859 |
| locations[0].source.issn | 0165-1684, 1872-7557 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0165-1684 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Signal Processing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Signal Processing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.sigpro.2022.108539 |
| locations[1].id | pmh:oai:arXiv.org:2111.07897 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2111.07897 |
| locations[1].version | publishedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2111.07897 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5034880586 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0220-2453 |
| authorships[0].author.display_name | J.K. Tugnait |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I82497590 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical & Computer Engineering, Auburn University, 200 Broun Hall, Auburn, 36849, Alabama, USA |
| authorships[0].institutions[0].id | https://openalex.org/I82497590 |
| authorships[0].institutions[0].ror | https://ror.org/02v80fc35 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82497590 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Auburn University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jitendra K. Tugnait |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electrical & Computer Engineering, Auburn University, 200 Broun Hall, Auburn, 36849, Alabama, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.07897 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On sparse high-dimensional graphical model learning for dependent time series |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.995199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W1566728629, https://openalex.org/W1502087262, https://openalex.org/W2617987378, https://openalex.org/W2509820422, https://openalex.org/W3122388856, https://openalex.org/W2107617395, https://openalex.org/W4297796976, https://openalex.org/W3088052873, https://openalex.org/W4386772697, https://openalex.org/W2995439826 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.07897 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.07897 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.07897 |
| primary_location.id | doi:10.1016/j.sigpro.2022.108539 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S154637859 |
| primary_location.source.issn | 0165-1684, 1872-7557 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0165-1684 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Signal Processing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Signal Processing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.sigpro.2022.108539 |
| publication_date | 2022-03-14 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2165009258, https://openalex.org/W2125631472, https://openalex.org/W2146585970, https://openalex.org/W2010824638, https://openalex.org/W6684415991, https://openalex.org/W2021981219, https://openalex.org/W2120488354, https://openalex.org/W6721995911, https://openalex.org/W1990948184, https://openalex.org/W2032005951, https://openalex.org/W2006649043, https://openalex.org/W2138105551, https://openalex.org/W2486183920, https://openalex.org/W2033881971, https://openalex.org/W1971600338, https://openalex.org/W1974105260, https://openalex.org/W1972276842, https://openalex.org/W1501531539, https://openalex.org/W3109466111, https://openalex.org/W2050730756, https://openalex.org/W2969563593, https://openalex.org/W2167409026, https://openalex.org/W6652165284, https://openalex.org/W1643717297, https://openalex.org/W2964215688, https://openalex.org/W6637806248, https://openalex.org/W2989637883, https://openalex.org/W6760305371, https://openalex.org/W6796560759, https://openalex.org/W6771078877, https://openalex.org/W2067145564, https://openalex.org/W6687851406, https://openalex.org/W6707091955, https://openalex.org/W1997927852, https://openalex.org/W2904241843, https://openalex.org/W2904100164, https://openalex.org/W2136271315, https://openalex.org/W2123934324, https://openalex.org/W2135046866, https://openalex.org/W2138019504, https://openalex.org/W1987371344, https://openalex.org/W2132555912, https://openalex.org/W6682227116, https://openalex.org/W2097581234, https://openalex.org/W6683962340, https://openalex.org/W3127323161, https://openalex.org/W2087714402, https://openalex.org/W4292363360, https://openalex.org/W6724489458, https://openalex.org/W2963739154, https://openalex.org/W2113328646, https://openalex.org/W2138679876, https://openalex.org/W3100543032, https://openalex.org/W2164278908, https://openalex.org/W4247571494, https://openalex.org/W2964211588, https://openalex.org/W2991948900, https://openalex.org/W2208602793, https://openalex.org/W609663673, https://openalex.org/W2166794017, https://openalex.org/W1726815243, https://openalex.org/W3098880893, https://openalex.org/W2918891585, https://openalex.org/W2162926179, https://openalex.org/W3169005668, https://openalex.org/W4211251910, https://openalex.org/W360528349, https://openalex.org/W3106319742, https://openalex.org/W3098834468, https://openalex.org/W2151128232, https://openalex.org/W2595142274, https://openalex.org/W562372631, https://openalex.org/W4243531027, https://openalex.org/W4205563404, https://openalex.org/W4301410333, https://openalex.org/W2007809740, https://openalex.org/W2950225911, https://openalex.org/W4211205285, https://openalex.org/W2112856361, https://openalex.org/W2167826316, https://openalex.org/W2485390190, https://openalex.org/W340056678 |
| referenced_works_count | 82 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5034880586 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I82497590 |
| citation_normalized_percentile.value | 0.92252261 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |