On specification tests for composite likelihood inference Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1093/biomet/asaa039
Summary Composite likelihood functions are often used for inference in applications where the data have a complex structure. While inference based on the composite likelihood can be more robust than inference based on the full likelihood, the inference is not valid if the associated conditional or marginal models are misspecified. In this paper, we propose a general class of specification tests for composite likelihood inference. The test statistics are motivated by the fact that the second Bartlett identity holds for each component of the composite likelihood function when these components are correctly specified. We construct the test statistics based on the discrepancy between the so-called composite information matrix and the sensitivity matrix. As an illustration, we study three important cases of the proposed tests and establish their limiting distributions under both null and local alternative hypotheses. Finally, we evaluate the finite-sample performance of the proposed tests in several examples.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/biomet/asaa039
- OA Status
- green
- Cited By
- 1
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3035476216
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3035476216Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/biomet/asaa039Digital Object Identifier
- Title
-
On specification tests for composite likelihood inferenceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-04Full publication date if available
- Authors
-
Jing Huang, Yang Ning, Nancy Reid, Yong ChenList of authors in order
- Landing page
-
https://doi.org/10.1093/biomet/asaa039Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/8232013Direct OA link when available
- Concepts
-
Inference, Mathematics, Likelihood function, Likelihood principle, Likelihood-ratio test, Statistical inference, Statistics, Statistical hypothesis testing, Score, Quasi-maximum likelihood, Econometrics, Computer science, Artificial intelligence, Maximum likelihoodTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3035476216 |
|---|---|
| doi | https://doi.org/10.1093/biomet/asaa039 |
| ids.doi | https://doi.org/10.1093/biomet/asaa039 |
| ids.mag | 3035476216 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34176951 |
| ids.openalex | https://openalex.org/W3035476216 |
| fwci | 0.24593193 |
| type | article |
| title | On specification tests for composite likelihood inference |
| biblio.issue | 4 |
| biblio.volume | 107 |
| biblio.last_page | 917 |
| biblio.first_page | 907 |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T10243 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Bayesian Inference |
| topics[2].id | https://openalex.org/T10136 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9980999827384949 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Inference |
| is_xpac | False |
| apc_list.value | 2582 |
| apc_list.currency | GBP |
| apc_list.value_usd | 3167 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776214188 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7502692937850952 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[0].display_name | Inference |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6838072538375854 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C89106044 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6257624626159668 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q45284 |
| concepts[2].display_name | Likelihood function |
| concepts[3].id | https://openalex.org/C189559763 |
| concepts[3].level | 5 |
| concepts[3].score | 0.5945838689804077 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q13200161 |
| concepts[3].display_name | Likelihood principle |
| concepts[4].id | https://openalex.org/C9483764 |
| concepts[4].level | 2 |
| concepts[4].score | 0.522754430770874 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q585740 |
| concepts[4].display_name | Likelihood-ratio test |
| concepts[5].id | https://openalex.org/C134261354 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49421027302742004 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[5].display_name | Statistical inference |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48386919498443604 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C87007009 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44978272914886475 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q210832 |
| concepts[7].display_name | Statistical hypothesis testing |
| concepts[8].id | https://openalex.org/C65660741 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41825711727142334 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3952743 |
| concepts[8].display_name | Score |
| concepts[9].id | https://openalex.org/C26359558 |
| concepts[9].level | 4 |
| concepts[9].score | 0.4117443561553955 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7269462 |
| concepts[9].display_name | Quasi-maximum likelihood |
| concepts[10].id | https://openalex.org/C149782125 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3586052656173706 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[10].display_name | Econometrics |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2761480212211609 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.24668997526168823 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C49781872 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2449299693107605 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1045555 |
| concepts[13].display_name | Maximum likelihood |
| keywords[0].id | https://openalex.org/keywords/inference |
| keywords[0].score | 0.7502692937850952 |
| keywords[0].display_name | Inference |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.6838072538375854 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/likelihood-function |
| keywords[2].score | 0.6257624626159668 |
| keywords[2].display_name | Likelihood function |
| keywords[3].id | https://openalex.org/keywords/likelihood-principle |
| keywords[3].score | 0.5945838689804077 |
| keywords[3].display_name | Likelihood principle |
| keywords[4].id | https://openalex.org/keywords/likelihood-ratio-test |
| keywords[4].score | 0.522754430770874 |
| keywords[4].display_name | Likelihood-ratio test |
| keywords[5].id | https://openalex.org/keywords/statistical-inference |
| keywords[5].score | 0.49421027302742004 |
| keywords[5].display_name | Statistical inference |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.48386919498443604 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/statistical-hypothesis-testing |
| keywords[7].score | 0.44978272914886475 |
| keywords[7].display_name | Statistical hypothesis testing |
| keywords[8].id | https://openalex.org/keywords/score |
| keywords[8].score | 0.41825711727142334 |
| keywords[8].display_name | Score |
| keywords[9].id | https://openalex.org/keywords/quasi-maximum-likelihood |
| keywords[9].score | 0.4117443561553955 |
| keywords[9].display_name | Quasi-maximum likelihood |
| keywords[10].id | https://openalex.org/keywords/econometrics |
| keywords[10].score | 0.3586052656173706 |
| keywords[10].display_name | Econometrics |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.2761480212211609 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.24668997526168823 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/maximum-likelihood |
| keywords[13].score | 0.2449299693107605 |
| keywords[13].display_name | Maximum likelihood |
| language | en |
| locations[0].id | doi:10.1093/biomet/asaa039 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S172180718 |
| locations[0].source.issn | 0006-3444, 1464-3510 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0006-3444 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Biometrika |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Biometrika |
| locations[0].landing_page_url | https://doi.org/10.1093/biomet/asaa039 |
| locations[1].id | pmid:34176951 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Biometrika |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34176951 |
| locations[2].id | pmh:oai:RePEc:oup:biomet:v:107:y::i:4:p:907-917. |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/10.1093/biomet/asaa039 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8232013 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Biometrika |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8232013 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5008531429 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6133-6988 |
| authorships[0].author.display_name | Jing Huang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A |
| authorships[0].institutions[0].id | https://openalex.org/I79576946 |
| authorships[0].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Pennsylvania |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jing Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A |
| authorships[1].author.id | https://openalex.org/A5070406375 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6877-9231 |
| authorships[1].author.display_name | Yang Ning |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics and Data Science, Cornell University, Comstock Hall 1188, Ithaca, New York 14853, U.S.A |
| authorships[1].institutions[0].id | https://openalex.org/I205783295 |
| authorships[1].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Cornell University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang Ning |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Statistics and Data Science, Cornell University, Comstock Hall 1188, Ithaca, New York 14853, U.S.A |
| authorships[2].author.id | https://openalex.org/A5084676897 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3802-6110 |
| authorships[2].author.display_name | Nancy Reid |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I185261750 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Statistical Sciences, University of Toronto, Toronto M5S 3GS, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I185261750 |
| authorships[2].institutions[0].ror | https://ror.org/03dbr7087 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I185261750 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | University of Toronto |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nancy Reid |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Statistical Sciences, University of Toronto, Toronto M5S 3GS, Canada |
| authorships[3].author.id | https://openalex.org/A5100454438 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0835-0788 |
| authorships[3].author.display_name | Yong Chen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A |
| authorships[3].institutions[0].id | https://openalex.org/I79576946 |
| authorships[3].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Pennsylvania |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yong Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8232013 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On specification tests for composite likelihood inference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W2141324124, https://openalex.org/W1486530265, https://openalex.org/W3021468056, https://openalex.org/W4298088629, https://openalex.org/W2290576709, https://openalex.org/W2084412915, https://openalex.org/W2473791430, https://openalex.org/W2736505678, https://openalex.org/W2019409546, https://openalex.org/W4245258506 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:8232013 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Biometrika |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8232013 |
| primary_location.id | doi:10.1093/biomet/asaa039 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S172180718 |
| primary_location.source.issn | 0006-3444, 1464-3510 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0006-3444 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Biometrika |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Biometrika |
| primary_location.landing_page_url | https://doi.org/10.1093/biomet/asaa039 |
| publication_date | 2020-05-04 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2114220616, https://openalex.org/W2094333688, https://openalex.org/W2130561717, https://openalex.org/W2079947444, https://openalex.org/W2006285561, https://openalex.org/W2074401593, https://openalex.org/W6698831664, https://openalex.org/W1978079048, https://openalex.org/W6633227431, https://openalex.org/W2038694923, https://openalex.org/W6670971334, https://openalex.org/W1992552576, https://openalex.org/W2149860264, https://openalex.org/W4254218257, https://openalex.org/W2297691986, https://openalex.org/W6821646924, https://openalex.org/W2115854441, https://openalex.org/W1997442792, https://openalex.org/W6640330755, https://openalex.org/W2165567190, https://openalex.org/W4246784033, https://openalex.org/W2076470657, https://openalex.org/W2009058783, https://openalex.org/W6679222004, https://openalex.org/W2143653769, https://openalex.org/W2017137572, https://openalex.org/W4362227092, https://openalex.org/W2552605897, https://openalex.org/W4288077072, https://openalex.org/W4239922346, https://openalex.org/W2311412087, https://openalex.org/W1552448616, https://openalex.org/W1526182533, https://openalex.org/W1599799101, https://openalex.org/W3103506888, https://openalex.org/W2952350108, https://openalex.org/W2081491959, https://openalex.org/W1923274812 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 15, 55 |
| abstract_inverted_index.As | 112 |
| abstract_inverted_index.In | 50 |
| abstract_inverted_index.We | 93 |
| abstract_inverted_index.an | 113 |
| abstract_inverted_index.be | 26 |
| abstract_inverted_index.by | 70 |
| abstract_inverted_index.if | 41 |
| abstract_inverted_index.in | 9, 146 |
| abstract_inverted_index.is | 38 |
| abstract_inverted_index.of | 58, 82, 120, 142 |
| abstract_inverted_index.on | 21, 32, 99 |
| abstract_inverted_index.or | 45 |
| abstract_inverted_index.we | 53, 115, 137 |
| abstract_inverted_index.The | 65 |
| abstract_inverted_index.and | 108, 124, 132 |
| abstract_inverted_index.are | 4, 48, 68, 90 |
| abstract_inverted_index.can | 25 |
| abstract_inverted_index.for | 7, 61, 79 |
| abstract_inverted_index.not | 39 |
| abstract_inverted_index.the | 12, 22, 33, 36, 42, 71, 74, 83, 95, 100, 103, 109, 121, 139, 143 |
| abstract_inverted_index.both | 130 |
| abstract_inverted_index.data | 13 |
| abstract_inverted_index.each | 80 |
| abstract_inverted_index.fact | 72 |
| abstract_inverted_index.full | 34 |
| abstract_inverted_index.have | 14 |
| abstract_inverted_index.more | 27 |
| abstract_inverted_index.null | 131 |
| abstract_inverted_index.test | 66, 96 |
| abstract_inverted_index.than | 29 |
| abstract_inverted_index.that | 73 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.used | 6 |
| abstract_inverted_index.when | 87 |
| abstract_inverted_index.While | 18 |
| abstract_inverted_index.based | 20, 31, 98 |
| abstract_inverted_index.cases | 119 |
| abstract_inverted_index.class | 57 |
| abstract_inverted_index.holds | 78 |
| abstract_inverted_index.local | 133 |
| abstract_inverted_index.often | 5 |
| abstract_inverted_index.study | 116 |
| abstract_inverted_index.tests | 60, 123, 145 |
| abstract_inverted_index.their | 126 |
| abstract_inverted_index.these | 88 |
| abstract_inverted_index.three | 117 |
| abstract_inverted_index.under | 129 |
| abstract_inverted_index.valid | 40 |
| abstract_inverted_index.where | 11 |
| abstract_inverted_index.matrix | 107 |
| abstract_inverted_index.models | 47 |
| abstract_inverted_index.paper, | 52 |
| abstract_inverted_index.robust | 28 |
| abstract_inverted_index.second | 75 |
| abstract_inverted_index.Summary | 0 |
| abstract_inverted_index.between | 102 |
| abstract_inverted_index.complex | 16 |
| abstract_inverted_index.general | 56 |
| abstract_inverted_index.matrix. | 111 |
| abstract_inverted_index.propose | 54 |
| abstract_inverted_index.several | 147 |
| abstract_inverted_index.Bartlett | 76 |
| abstract_inverted_index.Finally, | 136 |
| abstract_inverted_index.evaluate | 138 |
| abstract_inverted_index.function | 86 |
| abstract_inverted_index.identity | 77 |
| abstract_inverted_index.limiting | 127 |
| abstract_inverted_index.marginal | 46 |
| abstract_inverted_index.proposed | 122, 144 |
| abstract_inverted_index.Composite | 1 |
| abstract_inverted_index.component | 81 |
| abstract_inverted_index.composite | 23, 62, 84, 105 |
| abstract_inverted_index.construct | 94 |
| abstract_inverted_index.correctly | 91 |
| abstract_inverted_index.establish | 125 |
| abstract_inverted_index.examples. | 148 |
| abstract_inverted_index.functions | 3 |
| abstract_inverted_index.important | 118 |
| abstract_inverted_index.inference | 8, 19, 30, 37 |
| abstract_inverted_index.motivated | 69 |
| abstract_inverted_index.so-called | 104 |
| abstract_inverted_index.associated | 43 |
| abstract_inverted_index.components | 89 |
| abstract_inverted_index.inference. | 64 |
| abstract_inverted_index.likelihood | 2, 24, 63, 85 |
| abstract_inverted_index.specified. | 92 |
| abstract_inverted_index.statistics | 67, 97 |
| abstract_inverted_index.structure. | 17 |
| abstract_inverted_index.alternative | 134 |
| abstract_inverted_index.conditional | 44 |
| abstract_inverted_index.discrepancy | 101 |
| abstract_inverted_index.hypotheses. | 135 |
| abstract_inverted_index.information | 106 |
| abstract_inverted_index.likelihood, | 35 |
| abstract_inverted_index.performance | 141 |
| abstract_inverted_index.sensitivity | 110 |
| abstract_inverted_index.applications | 10 |
| abstract_inverted_index.distributions | 128 |
| abstract_inverted_index.finite-sample | 140 |
| abstract_inverted_index.illustration, | 114 |
| abstract_inverted_index.misspecified. | 49 |
| abstract_inverted_index.specification | 59 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5070406375 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I205783295 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.56019607 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |