On stability of Canonical Correlation Analysis and Partial Least Squares with application to brain-behavior associations Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1101/2020.08.25.265546
Associations between datasets can be discovered through multivariate methods like Canonical Correlation Analysis (CCA) or Partial Least Squares (PLS). A requisite property for interpretability and generalizability of CCA/PLS solutions is stability of feature patterns driving an association. However, stability of CCA/PLS in high-dimensional datasets is questionable, as found in empirical characterizations. To study these issues in a systematic manner, we developed a generative modeling framework to simulate synthetic datasets, parameterized by dimensionality, variance structure, and association strength. We found that when sample size is relatively small, but comparable to typical studies, CCA/PLS associations are highly unstable and inaccurate; both in their magnitude and importantly in the latent pattern underlying the discovered association. We confirmed these trends across two neuroimaging modalities, functional and diffusion MRI, and in independent datasets, Human Connectome Project (n ≈ 1000) and UK Biobank (n ≈ 20000) and found that only the latter comprised sufficient samples for stable mappings between imaging-derived and behavioral features. We further developed a power calculator to provide sample sizes required for stability and reliability of multivariate analyses for future studies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2020.08.25.265546
- https://www.biorxiv.org/content/biorxiv/early/2021/07/15/2020.08.25.265546.full.pdf
- OA Status
- green
- Cited By
- 75
- References
- 113
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3080315277
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3080315277Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2020.08.25.265546Digital Object Identifier
- Title
-
On stability of Canonical Correlation Analysis and Partial Least Squares with application to brain-behavior associationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-25Full publication date if available
- Authors
-
Markus Helmer, Shaun Warrington, Ali‐Reza Mohammadi‐Nejad, Jie Lisa Ji, Amber Howell, Benjamin Rosand, Alan Anticevic, Stamatios N. Sotiropoulos, John D. MurrayList of authors in order
- Landing page
-
https://doi.org/10.1101/2020.08.25.265546Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/07/15/2020.08.25.265546.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2021/07/15/2020.08.25.265546.full.pdfDirect OA link when available
- Concepts
-
Canonical correlation, Interpretability, Partial least squares regression, Stability (learning theory), Multivariate statistics, Generalizability theory, Correlation, Computer science, Partial correlation, Pattern recognition (psychology), Artificial intelligence, Human Connectome Project, Data mining, Statistics, Machine learning, Mathematics, Psychology, Neuroscience, Functional connectivity, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
75Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 11, 2023: 18, 2022: 22, 2021: 17, 2020: 7Per-year citation counts (last 5 years)
- References (count)
-
113Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3080315277 |
|---|---|
| doi | https://doi.org/10.1101/2020.08.25.265546 |
| ids.doi | https://doi.org/10.1101/2020.08.25.265546 |
| ids.mag | 3080315277 |
| ids.openalex | https://openalex.org/W3080315277 |
| fwci | 8.03367529 |
| type | preprint |
| title | On stability of Canonical Correlation Analysis and Partial Least Squares with application to brain-behavior associations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T11304 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[2].id | https://openalex.org/T13283 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9915000200271606 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3205 |
| topics[2].subfield.display_name | Experimental and Cognitive Psychology |
| topics[2].display_name | Mental Health Research Topics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C153874254 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8706473112106323 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q115542 |
| concepts[0].display_name | Canonical correlation |
| concepts[1].id | https://openalex.org/C2781067378 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7979341149330139 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[1].display_name | Interpretability |
| concepts[2].id | https://openalex.org/C22354355 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6597661972045898 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q422009 |
| concepts[2].display_name | Partial least squares regression |
| concepts[3].id | https://openalex.org/C112972136 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6053067445755005 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[3].display_name | Stability (learning theory) |
| concepts[4].id | https://openalex.org/C161584116 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5796420574188232 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[4].display_name | Multivariate statistics |
| concepts[5].id | https://openalex.org/C27158222 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5489256978034973 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[5].display_name | Generalizability theory |
| concepts[6].id | https://openalex.org/C117220453 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5352113246917725 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[6].display_name | Correlation |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.48969438672065735 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C64708745 |
| concepts[8].level | 3 |
| concepts[8].score | 0.46333447098731995 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2998010 |
| concepts[8].display_name | Partial correlation |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44669294357299805 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.44141268730163574 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C97820695 |
| concepts[11].level | 3 |
| concepts[11].score | 0.41593965888023376 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q387749 |
| concepts[11].display_name | Human Connectome Project |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3803349733352661 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3786621391773224 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.34455522894859314 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.34123170375823975 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.12923693656921387 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| concepts[17].id | https://openalex.org/C169760540 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[17].display_name | Neuroscience |
| concepts[18].id | https://openalex.org/C3018011982 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[18].display_name | Functional connectivity |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/canonical-correlation |
| keywords[0].score | 0.8706473112106323 |
| keywords[0].display_name | Canonical correlation |
| keywords[1].id | https://openalex.org/keywords/interpretability |
| keywords[1].score | 0.7979341149330139 |
| keywords[1].display_name | Interpretability |
| keywords[2].id | https://openalex.org/keywords/partial-least-squares-regression |
| keywords[2].score | 0.6597661972045898 |
| keywords[2].display_name | Partial least squares regression |
| keywords[3].id | https://openalex.org/keywords/stability |
| keywords[3].score | 0.6053067445755005 |
| keywords[3].display_name | Stability (learning theory) |
| keywords[4].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[4].score | 0.5796420574188232 |
| keywords[4].display_name | Multivariate statistics |
| keywords[5].id | https://openalex.org/keywords/generalizability-theory |
| keywords[5].score | 0.5489256978034973 |
| keywords[5].display_name | Generalizability theory |
| keywords[6].id | https://openalex.org/keywords/correlation |
| keywords[6].score | 0.5352113246917725 |
| keywords[6].display_name | Correlation |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.48969438672065735 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/partial-correlation |
| keywords[8].score | 0.46333447098731995 |
| keywords[8].display_name | Partial correlation |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.44669294357299805 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.44141268730163574 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/human-connectome-project |
| keywords[11].score | 0.41593965888023376 |
| keywords[11].display_name | Human Connectome Project |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.3803349733352661 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.3786621391773224 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.34455522894859314 |
| keywords[14].display_name | Machine learning |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.34123170375823975 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/psychology |
| keywords[16].score | 0.12923693656921387 |
| keywords[16].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1101/2020.08.25.265546 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/07/15/2020.08.25.265546.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2020.08.25.265546 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5074463522 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9680-0595 |
| authorships[0].author.display_name | Markus Helmer |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Psychiatry, Yale School of of Medicine, New Haven, CT 065 |
| authorships[0].institutions[0].id | https://openalex.org/I32971472 |
| authorships[0].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Yale University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Markus Helmer |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Psychiatry, Yale School of of Medicine, New Haven, CT 065 |
| authorships[1].author.id | https://openalex.org/A5038787148 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7198-8162 |
| authorships[1].author.display_name | Shaun Warrington |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I142263535 |
| authorships[1].affiliations[0].raw_affiliation_string | Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 UH, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I142263535 |
| authorships[1].institutions[0].ror | https://ror.org/01ee9ar58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I142263535 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Nottingham |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shaun Warrington |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 UH, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5082110549 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0710-6700 |
| authorships[2].author.display_name | Ali‐Reza Mohammadi‐Nejad |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I34931013, https://openalex.org/I4210137227, https://openalex.org/I4210146512 |
| authorships[2].affiliations[0].raw_affiliation_string | National Institute for Health Research (NIHR) Nottingham Biomedical Research Ctr, Queens Medical Ctr, Nottingham, United Kingdom |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I142263535 |
| authorships[2].affiliations[1].raw_affiliation_string | Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 UH, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I34931013 |
| authorships[2].institutions[0].ror | https://ror.org/0187kwz08 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I34931013 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | National Institute for Health Research |
| authorships[2].institutions[1].id | https://openalex.org/I4210146512 |
| authorships[2].institutions[1].ror | https://ror.org/046cr9566 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I1334287468, https://openalex.org/I4210146512 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | Nottingham Biomedical Research Centre |
| authorships[2].institutions[2].id | https://openalex.org/I4210137227 |
| authorships[2].institutions[2].ror | https://ror.org/03ap6wx93 |
| authorships[2].institutions[2].type | healthcare |
| authorships[2].institutions[2].lineage | https://openalex.org/I1334287468, https://openalex.org/I4210137227 |
| authorships[2].institutions[2].country_code | GB |
| authorships[2].institutions[2].display_name | Queen's Medical Centre |
| authorships[2].institutions[3].id | https://openalex.org/I142263535 |
| authorships[2].institutions[3].ror | https://ror.org/01ee9ar58 |
| authorships[2].institutions[3].type | education |
| authorships[2].institutions[3].lineage | https://openalex.org/I142263535 |
| authorships[2].institutions[3].country_code | GB |
| authorships[2].institutions[3].display_name | University of Nottingham |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ali-Reza Mohammadi-Nejad |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Institute for Health Research (NIHR) Nottingham Biomedical Research Ctr, Queens Medical Ctr, Nottingham, United Kingdom, Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 UH, United Kingdom |
| authorships[3].author.id | https://openalex.org/A5079398127 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6280-9070 |
| authorships[3].author.display_name | Jie Lisa Ji |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Psychiatry, Yale School of of Medicine, New Haven, CT 065 |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I32971472 |
| authorships[3].affiliations[1].raw_affiliation_string | Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA |
| authorships[3].institutions[0].id | https://openalex.org/I32971472 |
| authorships[3].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Yale University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jie Lisa Ji |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Psychiatry, Yale School of of Medicine, New Haven, CT 065, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA |
| authorships[4].author.id | https://openalex.org/A5047600185 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9709-8523 |
| authorships[4].author.display_name | Amber Howell |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[4].affiliations[0].raw_affiliation_string | Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I32971472 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Psychiatry, Yale School of of Medicine, New Haven, CT 065 |
| authorships[4].institutions[0].id | https://openalex.org/I32971472 |
| authorships[4].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Yale University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Amber Howell |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Psychiatry, Yale School of of Medicine, New Haven, CT 065, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA |
| authorships[5].author.id | https://openalex.org/A5025908397 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8140-9438 |
| authorships[5].author.display_name | Benjamin Rosand |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Physics, Yale University, New Haven, CT 0611, USA |
| authorships[5].institutions[0].id | https://openalex.org/I32971472 |
| authorships[5].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Yale University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Benjamin Rosand |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Physics, Yale University, New Haven, CT 0611, USA |
| authorships[6].author.id | https://openalex.org/A5003407293 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4324-0536 |
| authorships[6].author.display_name | Alan Anticevic |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Psychiatry, Yale School of of Medicine, New Haven, CT 065 |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I32971472 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Psychology, Yale University, New Haven, CT 0511, USA |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I32971472 |
| authorships[6].affiliations[2].raw_affiliation_string | Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA |
| authorships[6].institutions[0].id | https://openalex.org/I32971472 |
| authorships[6].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Yale University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Alan Anticevic |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Psychiatry, Yale School of of Medicine, New Haven, CT 065, Department of Psychology, Yale University, New Haven, CT 0511, USA, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA |
| authorships[7].author.id | https://openalex.org/A5052140351 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-4735-5776 |
| authorships[7].author.display_name | Stamatios N. Sotiropoulos |
| authorships[7].countries | GB |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I2802742124, https://openalex.org/I40120149, https://openalex.org/I4210101881 |
| authorships[7].affiliations[0].raw_affiliation_string | FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I34931013, https://openalex.org/I4210137227, https://openalex.org/I4210146512 |
| authorships[7].affiliations[1].raw_affiliation_string | National Institute for Health Research (NIHR) Nottingham Biomedical Research Ctr, Queens Medical Ctr, Nottingham, United Kingdom |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I142263535 |
| authorships[7].affiliations[2].raw_affiliation_string | Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 UH, United Kingdom |
| authorships[7].institutions[0].id | https://openalex.org/I2802742124 |
| authorships[7].institutions[0].ror | https://ror.org/0080acb59 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I2802742124, https://openalex.org/I4210127145, https://openalex.org/I4210147381 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | John Radcliffe Hospital |
| authorships[7].institutions[1].id | https://openalex.org/I34931013 |
| authorships[7].institutions[1].ror | https://ror.org/0187kwz08 |
| authorships[7].institutions[1].type | government |
| authorships[7].institutions[1].lineage | https://openalex.org/I34931013 |
| authorships[7].institutions[1].country_code | GB |
| authorships[7].institutions[1].display_name | National Institute for Health Research |
| authorships[7].institutions[2].id | https://openalex.org/I4210146512 |
| authorships[7].institutions[2].ror | https://ror.org/046cr9566 |
| authorships[7].institutions[2].type | facility |
| authorships[7].institutions[2].lineage | https://openalex.org/I1334287468, https://openalex.org/I4210146512 |
| authorships[7].institutions[2].country_code | GB |
| authorships[7].institutions[2].display_name | Nottingham Biomedical Research Centre |
| authorships[7].institutions[3].id | https://openalex.org/I4210137227 |
| authorships[7].institutions[3].ror | https://ror.org/03ap6wx93 |
| authorships[7].institutions[3].type | healthcare |
| authorships[7].institutions[3].lineage | https://openalex.org/I1334287468, https://openalex.org/I4210137227 |
| authorships[7].institutions[3].country_code | GB |
| authorships[7].institutions[3].display_name | Queen's Medical Centre |
| authorships[7].institutions[4].id | https://openalex.org/I142263535 |
| authorships[7].institutions[4].ror | https://ror.org/01ee9ar58 |
| authorships[7].institutions[4].type | education |
| authorships[7].institutions[4].lineage | https://openalex.org/I142263535 |
| authorships[7].institutions[4].country_code | GB |
| authorships[7].institutions[4].display_name | University of Nottingham |
| authorships[7].institutions[5].id | https://openalex.org/I40120149 |
| authorships[7].institutions[5].ror | https://ror.org/052gg0110 |
| authorships[7].institutions[5].type | education |
| authorships[7].institutions[5].lineage | https://openalex.org/I40120149 |
| authorships[7].institutions[5].country_code | GB |
| authorships[7].institutions[5].display_name | University of Oxford |
| authorships[7].institutions[6].id | https://openalex.org/I4210101881 |
| authorships[7].institutions[6].ror | https://ror.org/0172mzb45 |
| authorships[7].institutions[6].type | facility |
| authorships[7].institutions[6].lineage | https://openalex.org/I40120149, https://openalex.org/I4210101881, https://openalex.org/I87048295 |
| authorships[7].institutions[6].country_code | GB |
| authorships[7].institutions[6].display_name | Wellcome Centre for Integrative Neuroimaging |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Stamatios N. Sotiropoulos |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom, National Institute for Health Research (NIHR) Nottingham Biomedical Research Ctr, Queens Medical Ctr, Nottingham, United Kingdom, Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG7 UH, United Kingdom |
| authorships[8].author.id | https://openalex.org/A5024452548 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4115-8181 |
| authorships[8].author.display_name | John D. Murray |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I32971472 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Physics, Yale University, New Haven, CT 0611, USA |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I32971472 |
| authorships[8].affiliations[1].raw_affiliation_string | Department of Psychiatry, Yale School of of Medicine, New Haven, CT 065 |
| authorships[8].affiliations[2].institution_ids | https://openalex.org/I32971472 |
| authorships[8].affiliations[2].raw_affiliation_string | Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA |
| authorships[8].institutions[0].id | https://openalex.org/I32971472 |
| authorships[8].institutions[0].ror | https://ror.org/03v76x132 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I32971472 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Yale University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | John D. Murray |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | Department of Physics, Yale University, New Haven, CT 0611, USA, Department of Psychiatry, Yale School of of Medicine, New Haven, CT 065, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06511, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2021/07/15/2020.08.25.265546.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | On stability of Canonical Correlation Analysis and Partial Least Squares with application to brain-behavior associations |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W4378220270, https://openalex.org/W4292263000, https://openalex.org/W2070251547, https://openalex.org/W2003363096, https://openalex.org/W2573543640, https://openalex.org/W2906082895, https://openalex.org/W2138013759, https://openalex.org/W2065335560, https://openalex.org/W2371879038, https://openalex.org/W2085512328 |
| cited_by_count | 75 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 18 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 22 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 17 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 7 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2020.08.25.265546 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/07/15/2020.08.25.265546.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2020.08.25.265546 |
| primary_location.id | doi:10.1101/2020.08.25.265546 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2021/07/15/2020.08.25.265546.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2020.08.25.265546 |
| publication_date | 2020-08-25 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2024729467, https://openalex.org/W2522628945, https://openalex.org/W1828334443, https://openalex.org/W3015666767, https://openalex.org/W2025341678, https://openalex.org/W1975427503, https://openalex.org/W2159580216, https://openalex.org/W2137225583, https://openalex.org/W2073309755, https://openalex.org/W2309028480, https://openalex.org/W2151669887, https://openalex.org/W2029686664, https://openalex.org/W2946166014, https://openalex.org/W3037286204, https://openalex.org/W2060118593, https://openalex.org/W2011570929, https://openalex.org/W1983902856, https://openalex.org/W176856495, https://openalex.org/W3131670725, https://openalex.org/W2923495490, https://openalex.org/W1986864352, https://openalex.org/W1997292299, https://openalex.org/W3151176709, https://openalex.org/W3089416312, https://openalex.org/W2992146583, https://openalex.org/W4220838968, https://openalex.org/W4282971193, https://openalex.org/W4283751476, https://openalex.org/W4225429661, https://openalex.org/W2304763730, https://openalex.org/W2767589925, https://openalex.org/W2011402106, https://openalex.org/W2728681696, https://openalex.org/W2766258373, https://openalex.org/W4211129624, https://openalex.org/W2977916355, https://openalex.org/W3016298971, https://openalex.org/W2963174524, https://openalex.org/W2163235554, https://openalex.org/W2560565629, https://openalex.org/W4224313135, https://openalex.org/W2176140930, https://openalex.org/W2098290597, https://openalex.org/W2145541966, https://openalex.org/W4283315795, https://openalex.org/W2591658398, https://openalex.org/W1983208069, https://openalex.org/W2157446241, https://openalex.org/W2118366819, https://openalex.org/W2073588997, https://openalex.org/W2791194758, https://openalex.org/W2499800833, https://openalex.org/W2785652775, https://openalex.org/W3024238787, https://openalex.org/W2067214598, https://openalex.org/W2000133863, https://openalex.org/W2884183601, https://openalex.org/W2101135654, https://openalex.org/W2607804943, https://openalex.org/W2117621792, https://openalex.org/W2001789423, https://openalex.org/W2019502123, https://openalex.org/W2082704080, https://openalex.org/W1975341011, https://openalex.org/W2181523240, https://openalex.org/W1606491053, https://openalex.org/W2782556780, https://openalex.org/W4288919818, https://openalex.org/W1969435618, https://openalex.org/W1967827763, https://openalex.org/W4292053589, https://openalex.org/W2143090565, https://openalex.org/W2152454589, https://openalex.org/W2341934844, https://openalex.org/W2766963537, https://openalex.org/W2949177718, https://openalex.org/W2105824687, https://openalex.org/W2604239613, https://openalex.org/W2963389298, https://openalex.org/W2021515139, https://openalex.org/W1523385540, https://openalex.org/W3103145119, https://openalex.org/W3037945061, https://openalex.org/W2985923507, https://openalex.org/W2910515637, https://openalex.org/W2969155561, https://openalex.org/W1507353004, https://openalex.org/W2738780662, https://openalex.org/W2794652688, https://openalex.org/W1588204329, https://openalex.org/W2915941435, https://openalex.org/W1497960466, https://openalex.org/W2146292423, https://openalex.org/W2896476100, https://openalex.org/W2955501090, https://openalex.org/W3121452939, https://openalex.org/W1728842521, https://openalex.org/W2922853138, https://openalex.org/W2938820285, https://openalex.org/W3092538788, https://openalex.org/W1595159159, https://openalex.org/W1980553836, https://openalex.org/W3023823874, https://openalex.org/W2106498117, https://openalex.org/W2972679514, https://openalex.org/W2571093196, https://openalex.org/W2040846244, https://openalex.org/W2970396632, https://openalex.org/W2595077599, https://openalex.org/W1975077471, https://openalex.org/W2805554879, https://openalex.org/W2979446182, https://openalex.org/W2421101021 |
| referenced_works_count | 113 |
| abstract_inverted_index.A | 20 |
| abstract_inverted_index.a | 57, 62, 161 |
| abstract_inverted_index.(n | 132, 138 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.UK | 136 |
| abstract_inverted_index.We | 78, 113, 158 |
| abstract_inverted_index.an | 36 |
| abstract_inverted_index.as | 47 |
| abstract_inverted_index.be | 5 |
| abstract_inverted_index.by | 71 |
| abstract_inverted_index.in | 42, 49, 56, 100, 105, 126 |
| abstract_inverted_index.is | 30, 45, 84 |
| abstract_inverted_index.of | 27, 32, 40, 173 |
| abstract_inverted_index.or | 15 |
| abstract_inverted_index.to | 66, 89, 164 |
| abstract_inverted_index.we | 60 |
| abstract_inverted_index.and | 25, 75, 97, 103, 122, 125, 135, 141, 155, 171 |
| abstract_inverted_index.are | 94 |
| abstract_inverted_index.but | 87 |
| abstract_inverted_index.can | 4 |
| abstract_inverted_index.for | 23, 150, 169, 176 |
| abstract_inverted_index.the | 106, 110, 145 |
| abstract_inverted_index.two | 118 |
| abstract_inverted_index.≈ | 133, 139 |
| abstract_inverted_index.MRI, | 124 |
| abstract_inverted_index.both | 99 |
| abstract_inverted_index.like | 10 |
| abstract_inverted_index.only | 144 |
| abstract_inverted_index.size | 83 |
| abstract_inverted_index.that | 80, 143 |
| abstract_inverted_index.when | 81 |
| abstract_inverted_index.(CCA) | 14 |
| abstract_inverted_index.1000) | 134 |
| abstract_inverted_index.Human | 129 |
| abstract_inverted_index.Least | 17 |
| abstract_inverted_index.found | 48, 79, 142 |
| abstract_inverted_index.power | 162 |
| abstract_inverted_index.sizes | 167 |
| abstract_inverted_index.study | 53 |
| abstract_inverted_index.their | 101 |
| abstract_inverted_index.these | 54, 115 |
| abstract_inverted_index.(PLS). | 19 |
| abstract_inverted_index.20000) | 140 |
| abstract_inverted_index.across | 117 |
| abstract_inverted_index.future | 177 |
| abstract_inverted_index.highly | 95 |
| abstract_inverted_index.issues | 55 |
| abstract_inverted_index.latent | 107 |
| abstract_inverted_index.latter | 146 |
| abstract_inverted_index.sample | 82, 166 |
| abstract_inverted_index.small, | 86 |
| abstract_inverted_index.stable | 151 |
| abstract_inverted_index.trends | 116 |
| abstract_inverted_index.Biobank | 137 |
| abstract_inverted_index.CCA/PLS | 28, 41, 92 |
| abstract_inverted_index.Partial | 16 |
| abstract_inverted_index.Project | 131 |
| abstract_inverted_index.Squares | 18 |
| abstract_inverted_index.between | 2, 153 |
| abstract_inverted_index.driving | 35 |
| abstract_inverted_index.feature | 33 |
| abstract_inverted_index.further | 159 |
| abstract_inverted_index.manner, | 59 |
| abstract_inverted_index.methods | 9 |
| abstract_inverted_index.pattern | 108 |
| abstract_inverted_index.provide | 165 |
| abstract_inverted_index.samples | 149 |
| abstract_inverted_index.through | 7 |
| abstract_inverted_index.typical | 90 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Analysis | 13 |
| abstract_inverted_index.However, | 38 |
| abstract_inverted_index.analyses | 175 |
| abstract_inverted_index.datasets | 3, 44 |
| abstract_inverted_index.mappings | 152 |
| abstract_inverted_index.modeling | 64 |
| abstract_inverted_index.patterns | 34 |
| abstract_inverted_index.property | 22 |
| abstract_inverted_index.required | 168 |
| abstract_inverted_index.simulate | 67 |
| abstract_inverted_index.studies, | 91 |
| abstract_inverted_index.studies. | 178 |
| abstract_inverted_index.unstable | 96 |
| abstract_inverted_index.variance | 73 |
| abstract_inverted_index.Canonical | 11 |
| abstract_inverted_index.comprised | 147 |
| abstract_inverted_index.confirmed | 114 |
| abstract_inverted_index.datasets, | 69, 128 |
| abstract_inverted_index.developed | 61, 160 |
| abstract_inverted_index.diffusion | 123 |
| abstract_inverted_index.empirical | 50 |
| abstract_inverted_index.features. | 157 |
| abstract_inverted_index.framework | 65 |
| abstract_inverted_index.magnitude | 102 |
| abstract_inverted_index.requisite | 21 |
| abstract_inverted_index.solutions | 29 |
| abstract_inverted_index.stability | 31, 39, 170 |
| abstract_inverted_index.strength. | 77 |
| abstract_inverted_index.synthetic | 68 |
| abstract_inverted_index.Connectome | 130 |
| abstract_inverted_index.behavioral | 156 |
| abstract_inverted_index.calculator | 163 |
| abstract_inverted_index.comparable | 88 |
| abstract_inverted_index.discovered | 6, 111 |
| abstract_inverted_index.functional | 121 |
| abstract_inverted_index.generative | 63 |
| abstract_inverted_index.relatively | 85 |
| abstract_inverted_index.structure, | 74 |
| abstract_inverted_index.sufficient | 148 |
| abstract_inverted_index.systematic | 58 |
| abstract_inverted_index.underlying | 109 |
| abstract_inverted_index.Correlation | 12 |
| abstract_inverted_index.association | 76 |
| abstract_inverted_index.importantly | 104 |
| abstract_inverted_index.inaccurate; | 98 |
| abstract_inverted_index.independent | 127 |
| abstract_inverted_index.modalities, | 120 |
| abstract_inverted_index.reliability | 172 |
| abstract_inverted_index.Associations | 1 |
| abstract_inverted_index.association. | 37, 112 |
| abstract_inverted_index.associations | 93 |
| abstract_inverted_index.multivariate | 8, 174 |
| abstract_inverted_index.neuroimaging | 119 |
| abstract_inverted_index.parameterized | 70 |
| abstract_inverted_index.questionable, | 46 |
| abstract_inverted_index.dimensionality, | 72 |
| abstract_inverted_index.imaging-derived | 154 |
| abstract_inverted_index.generalizability | 26 |
| abstract_inverted_index.high-dimensional | 43 |
| abstract_inverted_index.interpretability | 24 |
| abstract_inverted_index.characterizations. | 51 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5052140351, https://openalex.org/A5024452548 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I142263535, https://openalex.org/I2802742124, https://openalex.org/I32971472, https://openalex.org/I34931013, https://openalex.org/I40120149, https://openalex.org/I4210101881, https://openalex.org/I4210137227, https://openalex.org/I4210146512 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.9809416 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |