On the column number and forbidden submatrices for $Δ$-modular matrices Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.03819
An integer matrix $\mathbf{A}$ is $Δ$-modular if the determinant of each $\text{rank}(\mathbf{A}) \times \text{rank}(\mathbf{A})$ submatrix of $\mathbf{A}$ has absolute value at most $Δ$. The study of $Δ$-modular matrices appears in the theory of integer programming, where an open conjecture is whether integer programs defined by $Δ$-modular constraint matrices can be solved in polynomial time if $Δ$ is considered constant. The conjecture is only known to hold true when $Δ\in \{1,2\}$. In light of this conjecture, a natural question is to understand structural properties of $Δ$-modular matrices. We consider the column number question -- how many nonzero, pairwise non-parallel columns can a rank-$r$ $Δ$-modular matrix have? We prove that for each positive integer $Δ$ and sufficiently large integer $r$, every rank-$r$ $Δ$-modular matrix has at most $\binom{r+1}{2} + 80Δ^7 \cdot r$ nonzero, pairwise non-parallel columns, which is tight up to the term $80Δ^7$. This is the first upper bound of the form $\binom{r+1}{2} + f(Δ)\cdot r$ with $f$ a polynomial function. Underlying our results is a partial list of matrices that cannot exist in a $Δ$-modular matrix. We believe this partial list may be of independent interest in future studies of $Δ$-modular matrices.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2212.03819
- https://arxiv.org/pdf/2212.03819
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310926648
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310926648Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2212.03819Digital Object Identifier
- Title
-
On the column number and forbidden submatrices for $Δ$-modular matricesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-07Full publication date if available
- Authors
-
Joseph Paat, Ingo Stallknecht, Zach Walsh, Luze XuList of authors in order
- Landing page
-
https://arxiv.org/abs/2212.03819Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2212.03819Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2212.03819Direct OA link when available
- Concepts
-
Combinatorics, Conjecture, Integer (computer science), Rank (graph theory), Matrix (chemical analysis), Mathematics, Modular form, Discrete mathematics, Pure mathematics, Computer science, Composite material, Programming language, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310926648 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2212.03819 |
| ids.doi | https://doi.org/10.48550/arxiv.2212.03819 |
| ids.openalex | https://openalex.org/W4310926648 |
| fwci | |
| type | preprint |
| title | On the column number and forbidden submatrices for $Δ$-modular matrices |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11596 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9805999994277954 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Constraint Satisfaction and Optimization |
| topics[1].id | https://openalex.org/T11727 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9749000072479248 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Algebra and Logic |
| topics[2].id | https://openalex.org/T11151 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9376000165939331 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2608 |
| topics[2].subfield.display_name | Geometry and Topology |
| topics[2].display_name | Advanced Topology and Set Theory |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C114614502 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7891838550567627 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[0].display_name | Combinatorics |
| concepts[1].id | https://openalex.org/C2780990831 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7163443565368652 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q319141 |
| concepts[1].display_name | Conjecture |
| concepts[2].id | https://openalex.org/C97137487 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7028707265853882 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q729138 |
| concepts[2].display_name | Integer (computer science) |
| concepts[3].id | https://openalex.org/C164226766 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6861819624900818 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[3].display_name | Rank (graph theory) |
| concepts[4].id | https://openalex.org/C106487976 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5680899024009705 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[4].display_name | Matrix (chemical analysis) |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5512698888778687 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C75764964 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5260657668113708 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q870797 |
| concepts[6].display_name | Modular form |
| concepts[7].id | https://openalex.org/C118615104 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36344367265701294 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[7].display_name | Discrete mathematics |
| concepts[8].id | https://openalex.org/C202444582 |
| concepts[8].level | 1 |
| concepts[8].score | 0.11284777522087097 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[8].display_name | Pure mathematics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.10109603404998779 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C159985019 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[10].display_name | Composite material |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C192562407 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[12].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/combinatorics |
| keywords[0].score | 0.7891838550567627 |
| keywords[0].display_name | Combinatorics |
| keywords[1].id | https://openalex.org/keywords/conjecture |
| keywords[1].score | 0.7163443565368652 |
| keywords[1].display_name | Conjecture |
| keywords[2].id | https://openalex.org/keywords/integer |
| keywords[2].score | 0.7028707265853882 |
| keywords[2].display_name | Integer (computer science) |
| keywords[3].id | https://openalex.org/keywords/rank |
| keywords[3].score | 0.6861819624900818 |
| keywords[3].display_name | Rank (graph theory) |
| keywords[4].id | https://openalex.org/keywords/matrix |
| keywords[4].score | 0.5680899024009705 |
| keywords[4].display_name | Matrix (chemical analysis) |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.5512698888778687 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/modular-form |
| keywords[6].score | 0.5260657668113708 |
| keywords[6].display_name | Modular form |
| keywords[7].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[7].score | 0.36344367265701294 |
| keywords[7].display_name | Discrete mathematics |
| keywords[8].id | https://openalex.org/keywords/pure-mathematics |
| keywords[8].score | 0.11284777522087097 |
| keywords[8].display_name | Pure mathematics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.10109603404998779 |
| keywords[9].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2212.03819 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2212.03819 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2212.03819 |
| locations[1].id | doi:10.48550/arxiv.2212.03819 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2212.03819 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5029144574 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2930-3155 |
| authorships[0].author.display_name | Joseph Paat |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Paat, Joseph |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5002247898 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ingo Stallknecht |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Stallknecht, Ingo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5112603217 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zach Walsh |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Walsh, Zach |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5000491124 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5705-4403 |
| authorships[3].author.display_name | Luze Xu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xu, Luze |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2212.03819 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-12-21T00:00:00 |
| display_name | On the column number and forbidden submatrices for $Δ$-modular matrices |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11596 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9805999994277954 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Constraint Satisfaction and Optimization |
| related_works | https://openalex.org/W2951225764, https://openalex.org/W4302067641, https://openalex.org/W2949575986, https://openalex.org/W2361403716, https://openalex.org/W2079849989, https://openalex.org/W2904061867, https://openalex.org/W4289115725, https://openalex.org/W2967798957, https://openalex.org/W3144644423, https://openalex.org/W3028475238 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2212.03819 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2212.03819 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2212.03819 |
| primary_location.id | pmh:oai:arXiv.org:2212.03819 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2212.03819 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2212.03819 |
| publication_date | 2022-12-07 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.+ | 126, 152 |
| abstract_inverted_index.a | 75, 100, 157, 164, 173 |
| abstract_inverted_index.-- | 92 |
| abstract_inverted_index.An | 0 |
| abstract_inverted_index.In | 70 |
| abstract_inverted_index.We | 86, 105, 176 |
| abstract_inverted_index.an | 36 |
| abstract_inverted_index.at | 20, 123 |
| abstract_inverted_index.be | 49, 182 |
| abstract_inverted_index.by | 44 |
| abstract_inverted_index.if | 6, 54 |
| abstract_inverted_index.in | 29, 51, 172, 186 |
| abstract_inverted_index.is | 4, 39, 56, 61, 78, 135, 143, 163 |
| abstract_inverted_index.of | 9, 15, 25, 32, 72, 83, 148, 167, 183, 189 |
| abstract_inverted_index.r$ | 129, 154 |
| abstract_inverted_index.to | 64, 79, 138 |
| abstract_inverted_index.up | 137 |
| abstract_inverted_index.$f$ | 156 |
| abstract_inverted_index.The | 23, 59 |
| abstract_inverted_index.and | 113 |
| abstract_inverted_index.can | 48, 99 |
| abstract_inverted_index.for | 108 |
| abstract_inverted_index.has | 17, 122 |
| abstract_inverted_index.how | 93 |
| abstract_inverted_index.may | 181 |
| abstract_inverted_index.our | 161 |
| abstract_inverted_index.the | 7, 30, 88, 139, 144, 149 |
| abstract_inverted_index.$r$, | 117 |
| abstract_inverted_index.$Δ$ | 55, 112 |
| abstract_inverted_index.This | 142 |
| abstract_inverted_index.each | 10, 109 |
| abstract_inverted_index.form | 150 |
| abstract_inverted_index.hold | 65 |
| abstract_inverted_index.list | 166, 180 |
| abstract_inverted_index.many | 94 |
| abstract_inverted_index.most | 21, 124 |
| abstract_inverted_index.only | 62 |
| abstract_inverted_index.open | 37 |
| abstract_inverted_index.term | 140 |
| abstract_inverted_index.that | 107, 169 |
| abstract_inverted_index.this | 73, 178 |
| abstract_inverted_index.time | 53 |
| abstract_inverted_index.true | 66 |
| abstract_inverted_index.when | 67 |
| abstract_inverted_index.with | 155 |
| abstract_inverted_index.$Δ$. | 22 |
| abstract_inverted_index.\cdot | 128 |
| abstract_inverted_index.bound | 147 |
| abstract_inverted_index.every | 118 |
| abstract_inverted_index.exist | 171 |
| abstract_inverted_index.first | 145 |
| abstract_inverted_index.have? | 104 |
| abstract_inverted_index.known | 63 |
| abstract_inverted_index.large | 115 |
| abstract_inverted_index.light | 71 |
| abstract_inverted_index.prove | 106 |
| abstract_inverted_index.study | 24 |
| abstract_inverted_index.tight | 136 |
| abstract_inverted_index.upper | 146 |
| abstract_inverted_index.value | 19 |
| abstract_inverted_index.where | 35 |
| abstract_inverted_index.which | 134 |
| abstract_inverted_index.$Δ\in | 68 |
| abstract_inverted_index.80Δ^7 | 127 |
| abstract_inverted_index.\times | 12 |
| abstract_inverted_index.cannot | 170 |
| abstract_inverted_index.column | 89 |
| abstract_inverted_index.future | 187 |
| abstract_inverted_index.matrix | 2, 103, 121 |
| abstract_inverted_index.number | 90 |
| abstract_inverted_index.solved | 50 |
| abstract_inverted_index.theory | 31 |
| abstract_inverted_index.appears | 28 |
| abstract_inverted_index.believe | 177 |
| abstract_inverted_index.columns | 98 |
| abstract_inverted_index.defined | 43 |
| abstract_inverted_index.integer | 1, 33, 41, 111, 116 |
| abstract_inverted_index.matrix. | 175 |
| abstract_inverted_index.natural | 76 |
| abstract_inverted_index.partial | 165, 179 |
| abstract_inverted_index.results | 162 |
| abstract_inverted_index.studies | 188 |
| abstract_inverted_index.whether | 40 |
| abstract_inverted_index.absolute | 18 |
| abstract_inverted_index.columns, | 133 |
| abstract_inverted_index.consider | 87 |
| abstract_inverted_index.interest | 185 |
| abstract_inverted_index.matrices | 27, 47, 168 |
| abstract_inverted_index.nonzero, | 95, 130 |
| abstract_inverted_index.pairwise | 96, 131 |
| abstract_inverted_index.positive | 110 |
| abstract_inverted_index.programs | 42 |
| abstract_inverted_index.question | 77, 91 |
| abstract_inverted_index.rank-$r$ | 101, 119 |
| abstract_inverted_index.$80Δ^7$. | 141 |
| abstract_inverted_index.\{1,2\}$. | 69 |
| abstract_inverted_index.constant. | 58 |
| abstract_inverted_index.function. | 159 |
| abstract_inverted_index.matrices. | 85, 191 |
| abstract_inverted_index.submatrix | 14 |
| abstract_inverted_index.Underlying | 160 |
| abstract_inverted_index.conjecture | 38, 60 |
| abstract_inverted_index.considered | 57 |
| abstract_inverted_index.constraint | 46 |
| abstract_inverted_index.f(Δ)\cdot | 153 |
| abstract_inverted_index.polynomial | 52, 158 |
| abstract_inverted_index.properties | 82 |
| abstract_inverted_index.structural | 81 |
| abstract_inverted_index.understand | 80 |
| abstract_inverted_index.conjecture, | 74 |
| abstract_inverted_index.determinant | 8 |
| abstract_inverted_index.independent | 184 |
| abstract_inverted_index.$\mathbf{A}$ | 3, 16 |
| abstract_inverted_index.$Δ$-modular | 5, 26, 45, 84, 102, 120, 174, 190 |
| abstract_inverted_index.non-parallel | 97, 132 |
| abstract_inverted_index.programming, | 34 |
| abstract_inverted_index.sufficiently | 114 |
| abstract_inverted_index.$\binom{r+1}{2} | 125, 151 |
| abstract_inverted_index.$\text{rank}(\mathbf{A}) | 11 |
| abstract_inverted_index.\text{rank}(\mathbf{A})$ | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |