On the isomorphism class of $q$-Gaussian C$^\ast$-algebras for infinite variables Article Swipe
Related Concepts
Isomorphism (crystallography)
Combinatorics
Hilbert space
Mathematics
Space (punctuation)
Algebraic number
Algebra over a field
Discrete mathematics
Physics
Pure mathematics
Crystallography
Mathematical analysis
Crystal structure
Philosophy
Linguistics
Chemistry
Matthijs Borst
,
Martijn Caspers
,
Mario Klisse
,
Mateusz Wasilewski
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.13640
· OA: W4221157366
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.13640
· OA: W4221157366
For a real Hilbert space $H_{\mathbb{R}}$ and $-1 < q < 1$ Bozejko and Speicher introduced the C$^\ast$-algebra $A_q(H_{\mathbb{R}})$ and von Neumann algebra $M_q(H_{\mathbb{R}})$ of $q$-Gaussian variables. We prove that if $\dim(H_{\mathbb{R}}) = \infty$ and $-1 < q < 1, q \not = 0$ then $M_q(H_{\mathbb{R}})$ does not have the Akemann-Ostrand property with respect to $A_q(H_{\mathbb{R}})$. It follows that $A_q(H_{\mathbb{R}})$ is not isomorphic to $A_0(H_{\mathbb{R}})$. This gives an answer to the C$^\ast$-algebraic part of Question 1.1 and Question 1.2 in [NeZe18].
Related Topics
Finding more related topics…